期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于矩阵分解的低光照图像增强方法
1
作者 叶梦君 胡长晖 +1 位作者 焦冰 郝雯娟 《物联网技术》 2025年第9期24-29,共6页
针对低光照图像存在低对比度、光照不均和细节信息弱等问题,提出一种基于矩阵分解的低光照图像增强方法。该方法基于图像的HSV空间,对低光照图像的亮度通道(V通道)进行可见度和对比度增强。首先,将RGB图像转换到HSV空间图像;然后,利用... 针对低光照图像存在低对比度、光照不均和细节信息弱等问题,提出一种基于矩阵分解的低光照图像增强方法。该方法基于图像的HSV空间,对低光照图像的亮度通道(V通道)进行可见度和对比度增强。首先,将RGB图像转换到HSV空间图像;然后,利用奇异值分解和列选主正交三角分解分别对提取的V通道进行对比度增强,再对处理后的亮度通道V的指数版本进行CLAHE处理;最后,利用色相通道H、饱和度通道S以及处理后的亮度通道V,通过HSV空间到RGB空间变换获得增强图像。通过在ExDark、BDD 100K和SICE数据库上进行实验验证,结果表明:提出的基于矩阵分解的低光照图像增强方法显著提高了图像的自然度、对比度和图像细节,并且与六种传统数学增强方法相比较,其衡量指标表现更佳。 展开更多
关键词 低光照图像 奇异值分解 列选主正交三角分解 图像增强 HSV空间 CLAHE
在线阅读 下载PDF
Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD
2
作者 胡长晖 路小波 +1 位作者 杜一君 陈伍军 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期395-399,共5页
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl... A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices. 展开更多
关键词 direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部