Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water spl...Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm–2 at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion.展开更多
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ...Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.展开更多
Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles...Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications.展开更多
The photocatalytic decarboxylation ofα-keto acids to generate acyl radicals under mild conditions represents a novel strategy in organic synthesis.However,the quantum efficiency of this process has been underexplored...The photocatalytic decarboxylation ofα-keto acids to generate acyl radicals under mild conditions represents a novel strategy in organic synthesis.However,the quantum efficiency of this process has been underexplored,limiting its practicality.To improve quantum efficiency,detailed analysis of mechanisms and kinetic data for key steps are essential.In this work,using time-resolved emission and absorption spectroscopy,we conducted a mechanistic study focusing on the excited-state properties of representative photocatalysts and their quenching efficiencies during the initial quenching process([Ir(dFCF_(3)ppy)_(2)(dtbbpy)]+(IrIII),Eosin Y(EY),Rose Bengal(RB),and 4CzPN).Our findings revealed that RB is active in its triplet states(^(3)RBH*),with lifetimes of 103 ns(in air)and 3.4µs(in anaerobic conditions),while EY and 4CzPN are active in their singlet states(^(1)EYH*and^(1)4CzPN*),with lifetimes of 2.9 ns and 5.1 ns,respectively.We measured the second-order rate constants for quenching by electron transfer fromα-keto acids:^(1)EYH*,2.3×10^(9)(mol/L)^(-1)·s^(-1);^(3)RBH*,3.2×10^(8)(mol/L)^(-1)·s^(-1)4CzPN*,2.8×10^(8)(mol/L)^(-1)·s^(-1).With our previously reported data for Mil,we established the quenching efficiency relationships for these photocatalysts withα-keto acids concentration.Our steady-state chromatography experiments determined the quantum efficiencies for consumption ofα-keto acids(IrIII>RBH>EYH>4CzPN),correlating these efficiencies with the initial quenching process.The results suggest that IrIII/RBH under anaerobic conditions could be optimal for high quantum efficiency.This study provides a foundation for designing new photocatalyticα-keto acid radical acylation systems with enhanced quantum efficiency.展开更多
Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts f...Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.展开更多
Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen p...Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.展开更多
In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations...In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.展开更多
We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffractio...We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.展开更多
This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critica...This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.展开更多
Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused muc...Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused much attention owing to its simple procedure and mild preparation conditions involved.In the present study,we demonstrate the application of the photochemical method to synthesize atomically dispersed Pd catalysts on(001)‐exposed anatase nanocrystals and commercial TiO2(P25).The as‐prepared catalysts exhibit both high activity and stability in the hydrogenation of styrene and catalytic oxidation of CO.展开更多
Increasing interest has been paid to the development of earth‐abundant metal complexes as promising surrogates of platinum for the electrocatalytically and photocatalytically driven hydrogen evolution reaction.In thi...Increasing interest has been paid to the development of earth‐abundant metal complexes as promising surrogates of platinum for the electrocatalytically and photocatalytically driven hydrogen evolution reaction.In this work,we report on molecular H2‐evolving catalysts based on two octahedral complexes of cobalt thiosemicarbazide,fac‐[Co(Htsc)3]Cl3·3H2O(C1,Htsc=thiosemicarbazide)and mer‐[Co(Htsc)3]Cl3·4H2O(C2),which have facial(fac)and meridional(mer)geometry,respectively.Electrochemical studies confirmed that both C1and C2are active electrocatalysts in MeOH solution using acetic acid as the proton source,with the same overpotential of^640mV and TOF of^210s–1.The complex C1also exhibits electrocatalytic activity for hydrogen evolution reaction in aqueous media free of organic solvent with a moderate overpotential(560mV).Visible light‐driven hydrogen evolution experiments were carried out in combination with fluorescein as photosensitizer and triethylamine as sacrificial reductant in homogeneous environments.Our studies showed that both C1and C2can be used as efficient proton‐reduction catalysts in purely aqueous solution and have the same photocatalytic activities.A TOF of125h–1with a TON of900for photocatalytic H2generation using C1and C2in water were achieved for the noble‐metal‐free homogeneous system.It should be noted that this is the first reported study investigating the effect on the catalytic hydrogen production performance of using fac‐and mer‐isomers of molecular catalysts.展开更多
Different materials,such as metal sulphides,are often combined with metal‐organic frameworks(MOFs)to develop multi‐functional composites and improve their photocatalytic properties.However,the high interfacial energ...Different materials,such as metal sulphides,are often combined with metal‐organic frameworks(MOFs)to develop multi‐functional composites and improve their photocatalytic properties.However,the high interfacial energy barrier limits the formation and nano‐assembly of the heterogeneous junctions between MOFs and metal sulphides.Herein,the heterostructured Zr‐MOF‐S@CdS are successfully constructed through a sequential synthesis method,in which the mesoporous Zr‐MOF are firstly decorated with thioglycolic acid through pore functionalization,and followed by the S^(2-)anion exchange process resulting in the surface close attached growth of CdS onto Zr‐MOF‐S materials.Due to the presence of molecules linkers,the CdS can be precisely decorated onto Zr‐MOF‐S without aggregation,which can provide more active sites.Moreover,the intimate connections and the suitable band structures between two materials can also facilitate the photogenerated electron‐hole pairs separation.Therefore,the resulting Zr‐MOF‐S@CdS with appropriate ratio exhibits high photocatalytic activity for water reduction,in which the H_(2) evolution rate can reach up to 1861.7μmol·g^(‒1)·h^(‒1),4.5 times higher than pure CdS and 2.3 times higher than of Zr‐MOF/CdS,respectively.Considering the promising future of MOF‐based photocatalysts,this work may provide an avenue for the further design and synthesis MOF‐based composite photocatalysts for efficient H_(2) evolution.展开更多
Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode ...Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability.展开更多
Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during pract...Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.展开更多
Two homogeneous photoelectrocatalytic systems composed of simple polypyridyl Co complexes[Co(tpy)2](PF6)2and[Co(bpy)3](PF6)2as electrocatalysts and a Si wafer as the photoelectrode were used for combined photoelectroc...Two homogeneous photoelectrocatalytic systems composed of simple polypyridyl Co complexes[Co(tpy)2](PF6)2and[Co(bpy)3](PF6)2as electrocatalysts and a Si wafer as the photoelectrode were used for combined photoelectrochemical reduction of CO2to CO.A high photocurrent density of1.4mA/cm2was observed for the system with the[Co(tpy)2](PF6)2catalyst and a photovoltage of400mV was generated.Faradaic efficiencies of CO were optimized to83%and94%for the[Co(tpy)2](PF6)2and[Co(bpy)3](PF6)2complexes,respectively,in acetonitrile solution with10%methanol(volume fraction,same below)as a protic additive.Addition of2%water volume fraction induced a large amount of non‐specific H2evolution by the Si photoelectrode.展开更多
Anchoring molecular cocatalysts on semiconductors has been recognized as a general strategy to boost the charge separation efficiency required for efficient photocatalysis.However,the effect of molecular cocatalysts o...Anchoring molecular cocatalysts on semiconductors has been recognized as a general strategy to boost the charge separation efficiency required for efficient photocatalysis.However,the effect of molecular cocatalysts on energy funneling(i.e.,directional energy transfer)inside semiconductor photocatalysts has not been demonstrated yet.Here we prepared CdS nanorods with both thin and thick rods and anchored the conjugated molecules 2‐mercaptobenzimidazole(MBI)and cobalt molecular catalysts(MCoA)sequentially onto the surface of nanorods.Transient absorption measurements revealed that MBI molecules facilitated energy funneling from thin to thick rods by the electronic coupling between thin and thick nanorods,which is essentially a light‐harvesting antenna approach to enhance the charge generation efficiency in the reaction center(here the thick rods).Moreover,MBI and MCoA molecules selectively extracted photogenerated holes and electrons of CdS nanorods rapidly,leading to efficient charge separation.Consequently,CdS/MBI/MCoA displayed 15 times enhanced photocatalytic H_(2) evolution(1.65 mL)than pure CdS(0.11 mL)over 3 h of illumination.The amount of H_(2) evolution reached 60 mL over 48 h of illumination with a high turnover number of 26294 and an apparent quantum efficiency of 71%at 420 nm.This study demonstrates a novel design principle for next‐generation photocatalysts.展开更多
Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromi...Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromine,a compound composed of an imidazole ring and a pyrimidine ring,was first copolymerized with urea to prepared doped PCN.Experimental investigations and theoretical calculations indicate that,a narrowing in band gap and a positive shift in valence band positon happened to the theobromine doped PCN,owing to the synergistic effect between the pyrimidine ring and the imidazole ring in the theobromine molecule.Moreover,it is shown that the doping with theobromine at a suitable mass fraction makes the obtained sample exhibit decreased photoluminescent emission,enhanced photocurrent density,and reduced charge-transport resistance.Consequently,an enhancement in the photocatalytic activity for water oxidation is found for the sample,which oxygen evolution rate is 4.43 times higher than that of the undoped PCN.This work sheds light on the choice of the molecular dopants for PCN to improve its photocatalytic performance.展开更多
文摘Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm–2 at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion.
文摘Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.
文摘Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications.
基金supported by the National Key R&D Program of China(No.2022YFA1505400)the National Natural Science Foundation of China(Nos.21933005,21727803,22003005 and 22273007)the Fundamental Research Funds for the Central Universities(No.2233300007).
文摘The photocatalytic decarboxylation ofα-keto acids to generate acyl radicals under mild conditions represents a novel strategy in organic synthesis.However,the quantum efficiency of this process has been underexplored,limiting its practicality.To improve quantum efficiency,detailed analysis of mechanisms and kinetic data for key steps are essential.In this work,using time-resolved emission and absorption spectroscopy,we conducted a mechanistic study focusing on the excited-state properties of representative photocatalysts and their quenching efficiencies during the initial quenching process([Ir(dFCF_(3)ppy)_(2)(dtbbpy)]+(IrIII),Eosin Y(EY),Rose Bengal(RB),and 4CzPN).Our findings revealed that RB is active in its triplet states(^(3)RBH*),with lifetimes of 103 ns(in air)and 3.4µs(in anaerobic conditions),while EY and 4CzPN are active in their singlet states(^(1)EYH*and^(1)4CzPN*),with lifetimes of 2.9 ns and 5.1 ns,respectively.We measured the second-order rate constants for quenching by electron transfer fromα-keto acids:^(1)EYH*,2.3×10^(9)(mol/L)^(-1)·s^(-1);^(3)RBH*,3.2×10^(8)(mol/L)^(-1)·s^(-1)4CzPN*,2.8×10^(8)(mol/L)^(-1)·s^(-1).With our previously reported data for Mil,we established the quenching efficiency relationships for these photocatalysts withα-keto acids concentration.Our steady-state chromatography experiments determined the quantum efficiencies for consumption ofα-keto acids(IrIII>RBH>EYH>4CzPN),correlating these efficiencies with the initial quenching process.The results suggest that IrIII/RBH under anaerobic conditions could be optimal for high quantum efficiency.This study provides a foundation for designing new photocatalyticα-keto acid radical acylation systems with enhanced quantum efficiency.
基金supported by the National Natural Science Foundation of China(21576050)the Natural Science Foundation of Jiangsu Province(BK20150604)~~
文摘Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.
基金supported by the JSPS KAKENHI(16H02268)from MEXTJapan and by the CRI(2012R1A3A2048842)Basic Science Research Program(NRF-2020R1I1A1A01074630)through NRF of Korea.
文摘Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.
文摘In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773113), the Solar Energy Project of Chinese Academy of Sciences, the Ministry of Education program for PCSIRT (No.IRT0756), and the Max Planck Gesellschaft of Chinese Academy of Sciences partner group.
文摘We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.
文摘This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.
基金supported by the Ministry of Science and Technology of nano major research projects(2015CB932303)the National Natural Science Foundation of China(21420102001,21131005,21333008,21390390)~~
文摘Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused much attention owing to its simple procedure and mild preparation conditions involved.In the present study,we demonstrate the application of the photochemical method to synthesize atomically dispersed Pd catalysts on(001)‐exposed anatase nanocrystals and commercial TiO2(P25).The as‐prepared catalysts exhibit both high activity and stability in the hydrogenation of styrene and catalytic oxidation of CO.
基金supported by the National Natural Science Foundation of China (21641011, 21773313)the Natural Science Foundation of Fujian Province (2015J01053, 2016J01060)+1 种基金Program for New Century Excellent Talents in Fujian Province UniversityPromotion Program for Young and Middle-aged Teacher in Science, Technology Research of Huaqiao University (ZQN-PY104)~~
文摘Increasing interest has been paid to the development of earth‐abundant metal complexes as promising surrogates of platinum for the electrocatalytically and photocatalytically driven hydrogen evolution reaction.In this work,we report on molecular H2‐evolving catalysts based on two octahedral complexes of cobalt thiosemicarbazide,fac‐[Co(Htsc)3]Cl3·3H2O(C1,Htsc=thiosemicarbazide)and mer‐[Co(Htsc)3]Cl3·4H2O(C2),which have facial(fac)and meridional(mer)geometry,respectively.Electrochemical studies confirmed that both C1and C2are active electrocatalysts in MeOH solution using acetic acid as the proton source,with the same overpotential of^640mV and TOF of^210s–1.The complex C1also exhibits electrocatalytic activity for hydrogen evolution reaction in aqueous media free of organic solvent with a moderate overpotential(560mV).Visible light‐driven hydrogen evolution experiments were carried out in combination with fluorescein as photosensitizer and triethylamine as sacrificial reductant in homogeneous environments.Our studies showed that both C1and C2can be used as efficient proton‐reduction catalysts in purely aqueous solution and have the same photocatalytic activities.A TOF of125h–1with a TON of900for photocatalytic H2generation using C1and C2in water were achieved for the noble‐metal‐free homogeneous system.It should be noted that this is the first reported study investigating the effect on the catalytic hydrogen production performance of using fac‐and mer‐isomers of molecular catalysts.
文摘Different materials,such as metal sulphides,are often combined with metal‐organic frameworks(MOFs)to develop multi‐functional composites and improve their photocatalytic properties.However,the high interfacial energy barrier limits the formation and nano‐assembly of the heterogeneous junctions between MOFs and metal sulphides.Herein,the heterostructured Zr‐MOF‐S@CdS are successfully constructed through a sequential synthesis method,in which the mesoporous Zr‐MOF are firstly decorated with thioglycolic acid through pore functionalization,and followed by the S^(2-)anion exchange process resulting in the surface close attached growth of CdS onto Zr‐MOF‐S materials.Due to the presence of molecules linkers,the CdS can be precisely decorated onto Zr‐MOF‐S without aggregation,which can provide more active sites.Moreover,the intimate connections and the suitable band structures between two materials can also facilitate the photogenerated electron‐hole pairs separation.Therefore,the resulting Zr‐MOF‐S@CdS with appropriate ratio exhibits high photocatalytic activity for water reduction,in which the H_(2) evolution rate can reach up to 1861.7μmol·g^(‒1)·h^(‒1),4.5 times higher than pure CdS and 2.3 times higher than of Zr‐MOF/CdS,respectively.Considering the promising future of MOF‐based photocatalysts,this work may provide an avenue for the further design and synthesis MOF‐based composite photocatalysts for efficient H_(2) evolution.
文摘Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability.
文摘Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.
基金supported by the National Key R&D Program of China (2016YFB0600901)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17030300)~~
文摘Two homogeneous photoelectrocatalytic systems composed of simple polypyridyl Co complexes[Co(tpy)2](PF6)2and[Co(bpy)3](PF6)2as electrocatalysts and a Si wafer as the photoelectrode were used for combined photoelectrochemical reduction of CO2to CO.A high photocurrent density of1.4mA/cm2was observed for the system with the[Co(tpy)2](PF6)2catalyst and a photovoltage of400mV was generated.Faradaic efficiencies of CO were optimized to83%and94%for the[Co(tpy)2](PF6)2and[Co(bpy)3](PF6)2complexes,respectively,in acetonitrile solution with10%methanol(volume fraction,same below)as a protic additive.Addition of2%water volume fraction induced a large amount of non‐specific H2evolution by the Si photoelectrode.
文摘Anchoring molecular cocatalysts on semiconductors has been recognized as a general strategy to boost the charge separation efficiency required for efficient photocatalysis.However,the effect of molecular cocatalysts on energy funneling(i.e.,directional energy transfer)inside semiconductor photocatalysts has not been demonstrated yet.Here we prepared CdS nanorods with both thin and thick rods and anchored the conjugated molecules 2‐mercaptobenzimidazole(MBI)and cobalt molecular catalysts(MCoA)sequentially onto the surface of nanorods.Transient absorption measurements revealed that MBI molecules facilitated energy funneling from thin to thick rods by the electronic coupling between thin and thick nanorods,which is essentially a light‐harvesting antenna approach to enhance the charge generation efficiency in the reaction center(here the thick rods).Moreover,MBI and MCoA molecules selectively extracted photogenerated holes and electrons of CdS nanorods rapidly,leading to efficient charge separation.Consequently,CdS/MBI/MCoA displayed 15 times enhanced photocatalytic H_(2) evolution(1.65 mL)than pure CdS(0.11 mL)over 3 h of illumination.The amount of H_(2) evolution reached 60 mL over 48 h of illumination with a high turnover number of 26294 and an apparent quantum efficiency of 71%at 420 nm.This study demonstrates a novel design principle for next‐generation photocatalysts.
基金supported by the National Natural Science Foundation of China(21276088,U1507201)Natural Science Foundation of Guangdong Province(2014A030312009)China Postdoctoral Science Foundation(2018M640784)~~
文摘Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromine,a compound composed of an imidazole ring and a pyrimidine ring,was first copolymerized with urea to prepared doped PCN.Experimental investigations and theoretical calculations indicate that,a narrowing in band gap and a positive shift in valence band positon happened to the theobromine doped PCN,owing to the synergistic effect between the pyrimidine ring and the imidazole ring in the theobromine molecule.Moreover,it is shown that the doping with theobromine at a suitable mass fraction makes the obtained sample exhibit decreased photoluminescent emission,enhanced photocurrent density,and reduced charge-transport resistance.Consequently,an enhancement in the photocatalytic activity for water oxidation is found for the sample,which oxygen evolution rate is 4.43 times higher than that of the undoped PCN.This work sheds light on the choice of the molecular dopants for PCN to improve its photocatalytic performance.