A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations dif...A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations differs greatly between Western and Eastern Alps, while contrast between Southern and Northern Alps is not evident. The main purpose of this paper is to interpret variability of humidity during the last interglacial-glacial cycle in the Alpine region, based on results of various surveys performed in the Alpine region. Results show that distribution of moisture throughout the Alps was most even during the Late Würmian, while precipitation was mainly concentrated in the (North)Western Alps during the Early Würmian and in the (North)Western and along all the Southern Alps during the Middle Würmian. The Eastern Alps were rather dry during both episodes. Such moisture distribution can be explained by paths of prevailing winds. Moisture distribution is directly linked with atmospheric and oceanic circulation.展开更多
Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, f...Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, finegrained clastic sediments can be used to estimate the average composition of UCC. In this study, we report δ^(56)Fe of loess-paleosol sequences from Yimaguan, Chinese Loess Plateau(CLP), to constrain the average Fe isotopic composition of UCC. The loess-paleosol sequences in this area formed in glacial-interglacial cycles and are characterized by varying degrees of weathering. Our data show that the loess-paleosol layers have extremely homogeneous Fe isotopic compositions with δ^(56)Fe ranging from 0.06‰ to 0.12‰, regardless of variations in the major element composition and weathering intensity. Our study indicates that since Fe isotopes are not significantly fractionated during loess deposition, the loess can be regarded as representative of UCC. It follows that the average δ^(56)Fe of UCC is 0.09‰± 0.03‰(2SD), consistent with previous estimates based on igneous rock data.展开更多
Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South ...Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South China Sea, have been conducted to reveal the spatiotemporal variations and the controlling factors of the sediment components and of their fluxes.Results show that deep-sea sediments in the northern South China Sea are composed mainly of terrigenous(59–89%) and carbonate(6–38%) particles, with minor components of opal(1.6–9.4%) and organic matter(0.7–1.9%). Fluxes of terrigenous and carbonate particles reach up to 2.4–21.8 and 0.4–6.5 g cm–2 kyr–1, respectively, values that are one to two orders of magnitude higher than the fluxes of opal and organic matter. Temporal variations of the percentages and fluxes of deep-sea sediment components have displayed clear glacial-interglacial cyclicity since the last glaciation. Terrigenous, opal, and organic matter percentages and their fluxes increas clearly during marine isotope stage 2, while carbonate percentages and fluxes show an opposite variation pattern or are characterized by an unremarkable increase. This implies that deep-sea carbonate in the South China Sea is affected by the dilution of terrigenous inputs during the sea-level lowstand. With increasing water depth along the transect, the terrigenous percentage increases but with largely decreased fluxes. Both the percentage and flux of carbonate decrease, while the percentages and fluxes of opal and organic matter display much more complicated variational features. The spatiotemporal variations of deep-sea sediment components and of their fluxes since the last glaciation in the northern South China Sea are strongly controlled by sea-level fluctuations. Simultaneously, terrigenous supply associated with monsoonal rainfall, marine primary productivity,and the dilution effect between terrigenous and biogenic particles, also play interconnected roles in the sediment accumulation processes.展开更多
文摘A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations differs greatly between Western and Eastern Alps, while contrast between Southern and Northern Alps is not evident. The main purpose of this paper is to interpret variability of humidity during the last interglacial-glacial cycle in the Alpine region, based on results of various surveys performed in the Alpine region. Results show that distribution of moisture throughout the Alps was most even during the Late Würmian, while precipitation was mainly concentrated in the (North)Western Alps during the Early Würmian and in the (North)Western and along all the Southern Alps during the Middle Würmian. The Eastern Alps were rather dry during both episodes. Such moisture distribution can be explained by paths of prevailing winds. Moisture distribution is directly linked with atmospheric and oceanic circulation.
基金financially supported by the National Science Foundation of China(41173031,41325011 and 41503001)the Fundamental Research Funds for the Central Universities(WK3410000004)
文摘Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, finegrained clastic sediments can be used to estimate the average composition of UCC. In this study, we report δ^(56)Fe of loess-paleosol sequences from Yimaguan, Chinese Loess Plateau(CLP), to constrain the average Fe isotopic composition of UCC. The loess-paleosol sequences in this area formed in glacial-interglacial cycles and are characterized by varying degrees of weathering. Our data show that the loess-paleosol layers have extremely homogeneous Fe isotopic compositions with δ^(56)Fe ranging from 0.06‰ to 0.12‰, regardless of variations in the major element composition and weathering intensity. Our study indicates that since Fe isotopes are not significantly fractionated during loess deposition, the loess can be regarded as representative of UCC. It follows that the average δ^(56)Fe of UCC is 0.09‰± 0.03‰(2SD), consistent with previous estimates based on igneous rock data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91528304, 41530964, 91428310 & 41525020)
文摘Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South China Sea, have been conducted to reveal the spatiotemporal variations and the controlling factors of the sediment components and of their fluxes.Results show that deep-sea sediments in the northern South China Sea are composed mainly of terrigenous(59–89%) and carbonate(6–38%) particles, with minor components of opal(1.6–9.4%) and organic matter(0.7–1.9%). Fluxes of terrigenous and carbonate particles reach up to 2.4–21.8 and 0.4–6.5 g cm–2 kyr–1, respectively, values that are one to two orders of magnitude higher than the fluxes of opal and organic matter. Temporal variations of the percentages and fluxes of deep-sea sediment components have displayed clear glacial-interglacial cyclicity since the last glaciation. Terrigenous, opal, and organic matter percentages and their fluxes increas clearly during marine isotope stage 2, while carbonate percentages and fluxes show an opposite variation pattern or are characterized by an unremarkable increase. This implies that deep-sea carbonate in the South China Sea is affected by the dilution of terrigenous inputs during the sea-level lowstand. With increasing water depth along the transect, the terrigenous percentage increases but with largely decreased fluxes. Both the percentage and flux of carbonate decrease, while the percentages and fluxes of opal and organic matter display much more complicated variational features. The spatiotemporal variations of deep-sea sediment components and of their fluxes since the last glaciation in the northern South China Sea are strongly controlled by sea-level fluctuations. Simultaneously, terrigenous supply associated with monsoonal rainfall, marine primary productivity,and the dilution effect between terrigenous and biogenic particles, also play interconnected roles in the sediment accumulation processes.