期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深层图卷积的EEG情绪识别方法研究
被引量:
2
1
作者
李奇
常立娜
+1 位作者
武岩
闫旭荣
《电子测量技术》
北大核心
2024年第4期18-22,共5页
针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的...
针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的节点特征收敛到固定空间无法学习到有效特征的问题,并在卷积层后加入PN正则化扩大不同情绪特征间的距离,提高情绪识别的性能。在SEED数据集上进行实验,与浅层图卷积网络相比准确率提高了0.7%,标准差下降了3.15。结果表明该模型提取的全局脑区空间关联信息对情绪识别的有效性。
展开更多
关键词
脑
电信号
情绪识别
深度图卷积神经网络
全局脑区
在线阅读
下载PDF
职称材料
题名
基于深层图卷积的EEG情绪识别方法研究
被引量:
2
1
作者
李奇
常立娜
武岩
闫旭荣
机构
长春理工大学计算机科学技术学院
长春理工大学中山研究院
出处
《电子测量技术》
北大核心
2024年第4期18-22,共5页
基金
吉林省科技发展计划国际科技合作项目(20200801035GH)
吉林省科技发展计划国际联合研究中心建设项目(20200802004GH)资助。
文摘
针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的节点特征收敛到固定空间无法学习到有效特征的问题,并在卷积层后加入PN正则化扩大不同情绪特征间的距离,提高情绪识别的性能。在SEED数据集上进行实验,与浅层图卷积网络相比准确率提高了0.7%,标准差下降了3.15。结果表明该模型提取的全局脑区空间关联信息对情绪识别的有效性。
关键词
脑
电信号
情绪识别
深度图卷积神经网络
全局脑区
Keywords
EEG
emotion recognition
deep graph convolutional neural networks
global brain region
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深层图卷积的EEG情绪识别方法研究
李奇
常立娜
武岩
闫旭荣
《电子测量技术》
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部