An efficient and practical route to various 3-alkoxylquinoxalin-2(1 H)-ones through visible-light photocatalytic C(sp^2)-H/O-H cross-dehydrogenation coupling of quinoxalin-2(1 H)-ones and alcohols,employing ambient ai...An efficient and practical route to various 3-alkoxylquinoxalin-2(1 H)-ones through visible-light photocatalytic C(sp^2)-H/O-H cross-dehydrogenation coupling of quinoxalin-2(1 H)-ones and alcohols,employing ambient air as an oxidant at room temperature under metal-free conditions,was developed.展开更多
The Cu(I)‐catalyzed cascade coupling/cyclization reaction of N‐tosylhydrazones with 3‐butyn‐1‐ol has been explored. This new strategy represents a simple platform for the synthesis of tetrahydrofurans in moderate...The Cu(I)‐catalyzed cascade coupling/cyclization reaction of N‐tosylhydrazones with 3‐butyn‐1‐ol has been explored. This new strategy represents a simple platform for the synthesis of tetrahydrofurans in moderate to good yields.展开更多
Novel tetra-methoxy resorcinarene tetra-hydrazide(TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles(PdNPs).The TMRTH...Novel tetra-methoxy resorcinarene tetra-hydrazide(TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles(PdNPs).The TMRTH-PdNPs were characterized by UV-Vis spectroscopy,transmission electron microscopy,energy-dispersive X-ray spectroscopy,and powder X-ray diffraction.The synthesized nanoparticles are polydispersible with a size of 5 ± 2 nm and were found to be recyclable over five cycles maintaining a catalytic activity in the Suzuki-Miyuara cross-coupling reaction.The nanocatalyst was superior in catalytic performance to conventional palladium catalysts with respect to reaction time,catalyst loading and recyclability.TMRTH-PdNPs show promise for their use in biological applications as they exhibit good antibacterial activity against gram-positive bacteria.展开更多
Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst...Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst has been systemically investi-gated by a series of characterizations such as TEM, N 2 adsorption, NMR, IR, XPS, etc. TEM and N 2 isotherms show that the sample maintains the nanoporous structure after the modification and coordination. XPS results show that chemical state of palladium species in the catalyst is mainly +2. More importantly, the catalyst shows very high activities and excellent recycla-bility in a series of coupling reactions including Suzuki, Sonogashira, and Heck reactions. Hot filtration and poison of catalysts experiments have also been performed and the results indicate that soluble active species (mainly Pd(0) species) in-situ gener-ated from the catalyst under the reaction conditions are the active intermediates, which would redeposit to the supporter after the reactions.展开更多
Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs ...Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 ℃. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.展开更多
文摘An efficient and practical route to various 3-alkoxylquinoxalin-2(1 H)-ones through visible-light photocatalytic C(sp^2)-H/O-H cross-dehydrogenation coupling of quinoxalin-2(1 H)-ones and alcohols,employing ambient air as an oxidant at room temperature under metal-free conditions,was developed.
基金supported by the National Basic Research Program of China (973 Program, 2015CB856600)the National Natural Science Founda-tion of China (21472004, 21332002)~~
文摘The Cu(I)‐catalyzed cascade coupling/cyclization reaction of N‐tosylhydrazones with 3‐butyn‐1‐ol has been explored. This new strategy represents a simple platform for the synthesis of tetrahydrofurans in moderate to good yields.
基金financial assistance provided by UGC(University Grant Commission)DRDO (Defence Research Development Organisation),New Delhi
文摘Novel tetra-methoxy resorcinarene tetra-hydrazide(TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles(PdNPs).The TMRTH-PdNPs were characterized by UV-Vis spectroscopy,transmission electron microscopy,energy-dispersive X-ray spectroscopy,and powder X-ray diffraction.The synthesized nanoparticles are polydispersible with a size of 5 ± 2 nm and were found to be recyclable over five cycles maintaining a catalytic activity in the Suzuki-Miyuara cross-coupling reaction.The nanocatalyst was superior in catalytic performance to conventional palladium catalysts with respect to reaction time,catalyst loading and recyclability.TMRTH-PdNPs show promise for their use in biological applications as they exhibit good antibacterial activity against gram-positive bacteria.
基金supported by the National Natural Science Foundation of China (20973079 & 21003107)State Basic Research Project of China(2009CB623507)Fundamental Research Funds for the Central Universities (2010QNA3035)
文摘Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst has been systemically investi-gated by a series of characterizations such as TEM, N 2 adsorption, NMR, IR, XPS, etc. TEM and N 2 isotherms show that the sample maintains the nanoporous structure after the modification and coordination. XPS results show that chemical state of palladium species in the catalyst is mainly +2. More importantly, the catalyst shows very high activities and excellent recycla-bility in a series of coupling reactions including Suzuki, Sonogashira, and Heck reactions. Hot filtration and poison of catalysts experiments have also been performed and the results indicate that soluble active species (mainly Pd(0) species) in-situ gener-ated from the catalyst under the reaction conditions are the active intermediates, which would redeposit to the supporter after the reactions.
文摘Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 ℃. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.