After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting cont...After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.展开更多
The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting la...The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting lane and target lane, a new virtual trajectory planning method for lane changing on curved road was presented, and the calculating formulas for ideal states of vehicle in the inertial coordinate system during a lane changing maneuver were established. Applying the predetermined trajectory, the reference yaw angle and yaw rate for lane changing were generated. On the assumption that the information on yaw rate of vehicle can be measured with on-board sensors and based on the lateral dynamical model of vehicle, the yaw-rate-tracking control law was designed by applying nonsingular terminal sliding mode technology. Based on Lyapunov function method, the finite-time convergence property of the system was obtained from the phase-plane analysis. Simulation results showed that if the curvature difference between starting lane and target lane was not considered, then at the finishing time of lane changing, it was impossible to avoid the deviation of the virtual trajectory panned from the target lane, which increased with the decrease of curvature radius. With the trajectory planning method and yaw rate-tracking control law proposed in this paper and considering the curvature difference between the starting lane and target lane, the desired virtual trajectory for lane changing without deviation was obtained and the expected tracking performance was also verified by the simulation.展开更多
文摘After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.
基金supported by the National Natural Science Foundation of China (Grant No. 10772152)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010FM008)
文摘The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting lane and target lane, a new virtual trajectory planning method for lane changing on curved road was presented, and the calculating formulas for ideal states of vehicle in the inertial coordinate system during a lane changing maneuver were established. Applying the predetermined trajectory, the reference yaw angle and yaw rate for lane changing were generated. On the assumption that the information on yaw rate of vehicle can be measured with on-board sensors and based on the lateral dynamical model of vehicle, the yaw-rate-tracking control law was designed by applying nonsingular terminal sliding mode technology. Based on Lyapunov function method, the finite-time convergence property of the system was obtained from the phase-plane analysis. Simulation results showed that if the curvature difference between starting lane and target lane was not considered, then at the finishing time of lane changing, it was impossible to avoid the deviation of the virtual trajectory panned from the target lane, which increased with the decrease of curvature radius. With the trajectory planning method and yaw rate-tracking control law proposed in this paper and considering the curvature difference between the starting lane and target lane, the desired virtual trajectory for lane changing without deviation was obtained and the expected tracking performance was also verified by the simulation.