A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, w...A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, we derive the rotational KdV (rKdV for short) equation. And then, with the help of Jaeobi elliptie functions, we obtain various periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures of rational form.展开更多
Applying the classical Lie symmetry approach to the barotropic and quasi-geostrophic potential vorticity equation without forcing and dissipation on a β-plane channel, we find a new symmetry, which is not presented i...Applying the classical Lie symmetry approach to the barotropic and quasi-geostrophic potential vorticity equation without forcing and dissipation on a β-plane channel, we find a new symmetry, which is not presented in a previous work [F. Huang, Commun. Theor. Phys. (Beijing, China) 42 (2004) 903]. A general finite transformation group is obtained based on the full Lie point symmetry, Furthermore, two new types of similarity reduction solutions are obtained.展开更多
基金The project supports by National Natural Science Foundation of China under Grant No. 40233033
文摘A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, we derive the rotational KdV (rKdV for short) equation. And then, with the help of Jaeobi elliptie functions, we obtain various periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures of rational form.
基金The project supported by the Alexander von Humboldt Foundationthe Youth Foundation of Shanghai Jiao Tong UniversityNational Natural Science Foundation of China under Grant No.10475055
文摘Applying the classical Lie symmetry approach to the barotropic and quasi-geostrophic potential vorticity equation without forcing and dissipation on a β-plane channel, we find a new symmetry, which is not presented in a previous work [F. Huang, Commun. Theor. Phys. (Beijing, China) 42 (2004) 903]. A general finite transformation group is obtained based on the full Lie point symmetry, Furthermore, two new types of similarity reduction solutions are obtained.