利用R.S.Burachik和S.Scheimberg(SIAM J Control Optim,2001,39(5):1633-1649.)介绍的近似点算法和Bregman泛函,在自反Banach空间中建立了一类广义混合变分不等式解的迭代算法,证明了迭代序列是有定义的,并且弱收敛于广义混合变分不等...利用R.S.Burachik和S.Scheimberg(SIAM J Control Optim,2001,39(5):1633-1649.)介绍的近似点算法和Bregman泛函,在自反Banach空间中建立了一类广义混合变分不等式解的迭代算法,证明了迭代序列是有定义的,并且弱收敛于广义混合变分不等式的解.同时,给出了广义混合变分不等式解的存在性的一个充分必要条件.展开更多
基金Supported by the National Natural Science Foundation of China(11071053)the Natural Science Foundation of Hebei Province(A2010001482)the Project of Science and Research of Hebei Education Department(the second round in 2010)
基金Supported by by National Natural Science Foundation of China(11071053)the Natural Science Foundation of Hebei Province(A2010001482)the Key Project of Science and Research of Hebei Education Department(ZH2012080)
基金Supported by the National Natural Science Foundation of China(11071053)the Natural Science Foundation of Hebei Province(A2010001482)the Project of Science and Research of Hebei Education Department(the second round in 2010)
基金Supported by NSFC (Nos.11771063,12171062)Natural Science Foundation of Chongqing(No.cstc2020jcyj-msxmX0455)Science and Technology Project of Chongqing Education Committee (No.KJZD-K201900504)。
文摘利用R.S.Burachik和S.Scheimberg(SIAM J Control Optim,2001,39(5):1633-1649.)介绍的近似点算法和Bregman泛函,在自反Banach空间中建立了一类广义混合变分不等式解的迭代算法,证明了迭代序列是有定义的,并且弱收敛于广义混合变分不等式的解.同时,给出了广义混合变分不等式解的存在性的一个充分必要条件.