Subsurface buoy systems,especially equipped with the vector sensor,have more and more extensive applications in military and civilian regions.However,their acoustic performances are constrained by the vibration result...Subsurface buoy systems,especially equipped with the vector sensor,have more and more extensive applications in military and civilian regions.However,their acoustic performances are constrained by the vibration resulting from the unavoidable ocean current in some degree.The influence of such vibrations is quantitatively analyzed by means of modeling the simplified models of two deployment configurations involving the positive buoyant buoy and neutral buoy system.The corresponding formulas are deduced respectively for the deployment configuration buoy systems in the motion state firstly.Then the simulation software is developed and some numerical simulations are put up via the Runge-Kutta method.The simulation results and theoretical analysis indicate that the neutral buoy will be an excellent design protocol in engineering application in comparison with the positive buoyant buoy.展开更多
The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/trib...The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.展开更多
文摘Subsurface buoy systems,especially equipped with the vector sensor,have more and more extensive applications in military and civilian regions.However,their acoustic performances are constrained by the vibration resulting from the unavoidable ocean current in some degree.The influence of such vibrations is quantitatively analyzed by means of modeling the simplified models of two deployment configurations involving the positive buoyant buoy and neutral buoy system.The corresponding formulas are deduced respectively for the deployment configuration buoy systems in the motion state firstly.Then the simulation software is developed and some numerical simulations are put up via the Runge-Kutta method.The simulation results and theoretical analysis indicate that the neutral buoy will be an excellent design protocol in engineering application in comparison with the positive buoyant buoy.
基金supported by the National Natural Science Foundation of China(Grant Nos.61525107,51422510&51605449)the National High Technology Research and Development Program of China(Grant No.2015AA042601)
文摘The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.