期刊文献+
共找到63,102篇文章
< 1 2 250 >
每页显示 20 50 100
基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法 被引量:1
1
作者 薛健侗 马宏忠 +2 位作者 倪一铭 万可力 迮恒鹏 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3783-3792,共10页
为了更加准确有效地对变压器绕组状态进行分析,提出了一种基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法。首先,运用C-C法重构变压器振动信号的相空间,分析变压器振动信号的混沌特性,得到关联维数、Kolmogorov熵... 为了更加准确有效地对变压器绕组状态进行分析,提出了一种基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法。首先,运用C-C法重构变压器振动信号的相空间,分析变压器振动信号的混沌特性,得到关联维数、Kolmogorov熵作为混沌特征。然后,将蜉蝣优化算法引入K-means聚类分析中,对高维相空间轨迹的簇中心选取进行优化,得到相轨迹的簇中心矩之和、矢径偏移,并作为几何特征。实验结果表明:变压器振动信号的最大Lyapunov指数均大于0,适用于混沌特性分析;由变压器振动信号计算出的混沌特征能够表征变压器绕组的松紧程度;同时,经蜉蝣优化的K-means算法得到的簇中心能够作为特征点提取整个相空间轨迹的几何特征,也能够区分绕组的松动故障;将两种特征结合能够实现变压器绕组状态的准确监测,从而为变压器绕组在线检修提供了一种理论依据。 展开更多
关键词 变压器 绕组松动 混沌理论 蜉蝣优化k-means算法 混沌特征 几何特征
在线阅读 下载PDF
基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷分析方法
2
作者 杨洪苏 马宏忠 薛健侗 《科学技术与工程》 北大核心 2024年第25期10798-10807,共10页
为了更加有效地对变压器铁心状态进行分析,提出一种基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷特征分析方法。首先,运用C-C法求解重构相空间的嵌入维数与延迟时间,重构变压器振动信号的相空间。其次,计算变压器振动信号的... 为了更加有效地对变压器铁心状态进行分析,提出一种基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷特征分析方法。首先,运用C-C法求解重构相空间的嵌入维数与延迟时间,重构变压器振动信号的相空间。其次,计算变压器振动信号的最大Lyapunov指数来判断系统是否具有混沌特性,选取关联维数、Kolmogorov熵作为一组混沌特征以识别铁心的松动程度。再次,将麻雀搜索算法引入K-means聚类算法优化初始中心簇的选取并使用簇中心与簇类点的位移平均值作为描述变压器铁心松动状态的定量特征。最后,将两组特征结合起来形成变压器铁心松动故障的诊断指标,为变压器铁心的松动故障诊断提供理论依据,并投入分类器进行故障诊断,验证两组特征结合的优越性。 展开更多
关键词 变压器 铁心松动 故障诊断 混沌理论 麻雀优化k-means算法
在线阅读 下载PDF
基于BBO优化K-means算法的WSN分簇路由算法 被引量:1
3
作者 彭程 谭冲 +1 位作者 刘洪 郑敏 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第3期357-364,共8页
针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子... 针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子和距离因子设计了新的适应度函数选举最优簇首,完成分簇任务。数据传输阶段,则利用遗传算法为簇首节点搜寻到基站的最佳数据传输路径。仿真结果表明,相较于LEACH、LEACH-C、K-GA等算法,BBOK-GA降低了网络能耗,提高了网络吞吐量,延长了网络生存周期。 展开更多
关键词 无线传感器网络 生物地理学优化算法 遗传算法 k-means算法 分簇路由
在线阅读 下载PDF
基于优化K-means算法的高校成绩聚类分析研究 被引量:3
4
作者 张梁 杨立波 +1 位作者 张小勇 史俊冰 《太原学院学报(自然科学版)》 2024年第2期79-84,共6页
针对经典K均值算法在聚类中心易受异常值影响,导致聚类结果不稳定的问题,提出基于样本分布密度的优化K-means算法,以提高聚类稳定性和准确性;聚类后通过CH指数和分类区间占比总体两种方法,客观评价3种离散化方法,结果表明,优化的K-mean... 针对经典K均值算法在聚类中心易受异常值影响,导致聚类结果不稳定的问题,提出基于样本分布密度的优化K-means算法,以提高聚类稳定性和准确性;聚类后通过CH指数和分类区间占比总体两种方法,客观评价3种离散化方法,结果表明,优化的K-means算法避免了区间分类不合理现象,更加准确地反映了成绩样本的分布特点。 展开更多
关键词 均值算法 分布密度 聚类 k-means
在线阅读 下载PDF
基于自适应遗传优化k-means算法的高校学情分析
5
作者 张露露 《吉林农业科技学院学报》 2024年第3期17-20,68,共5页
为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足... 为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足,提出通过遗传算法的交叉操作和变异操作获取最优解,同时通过自适应策略动态地调整交叉概率和变异概率,避免过早产生次优解;其次对学生数字逻辑学习过程相关数据执行自适应策略的遗传优化k-means算法;最后对算法执行结果进行分析。结果表明,本文研究的基于自适应策略的遗传优化k-means算法能够获得更加有效的分析结果。 展开更多
关键词 学情分析 k-means算法 遗传优化 自适应
在线阅读 下载PDF
基于时间因子的混沌粒子群优化K-means算法 被引量:3
6
作者 王建芳 郝丽静 《河南理工大学学报(自然科学版)》 CAS 北大核心 2016年第4期539-544,共6页
针对传统的K-means算法对初始聚类中心取值敏感和易陷入局部最优解等缺点,提出一种带时间因子的改进粒子群优化(Particle Swarm Optimization,PSO)聚类算法。首先在PSO算法中引入反映时间效应的动态调整时间因子,以避免粒子在最优解附... 针对传统的K-means算法对初始聚类中心取值敏感和易陷入局部最优解等缺点,提出一种带时间因子的改进粒子群优化(Particle Swarm Optimization,PSO)聚类算法。首先在PSO算法中引入反映时间效应的动态调整时间因子,以避免粒子在最优解附近震荡,为保证粒子在规定范围内运动,采用边界缓冲墙对越界粒子进行处理;其次针对粒子群算法存在的全局搜索性能问题,通过改进的混沌技术对粒子群进行扰动,以混沌搜索替代随机搜索,确保种群的多样性,进而使粒子群向更优的方向移动;最后将改进后的粒子群算法结合K-means算法,以提高粒子的局部勘探能力,从而更快地找到全局最优位置。对UCI中的Iris数据集和Wine数据集仿真表明,该算法相比其他2种算法,聚类准确率分别增长了5.1%和1.3%,1.79%和1.09%。 展开更多
关键词 k-means 混沌技术 粒子群优化算法 时间因子
在线阅读 下载PDF
基于模拟退火思想的优化k-means算法 被引量:6
7
作者 陈慧萍 贺会景 +1 位作者 陈岚峰 蒋峰 《河海大学常州分校学报》 2006年第4期29-32,40,共5页
鉴于典型的基于划分的聚类算法——k-means算法中存在局部最优和算法执行速度慢等问题,提出了基于模拟退火思想的优化k!means算法.该算法将模拟退火思想用于对k-means算法的优化,是一种具有全局最优解和较高执行效率的算法.针对聚类算... 鉴于典型的基于划分的聚类算法——k-means算法中存在局部最优和算法执行速度慢等问题,提出了基于模拟退火思想的优化k!means算法.该算法将模拟退火思想用于对k-means算法的优化,是一种具有全局最优解和较高执行效率的算法.针对聚类算法典型数据集和随机产生的数据集,在不同情况下进行对比实验.实验结果表明,优化k-means算法优于基本的k-means算法。 展开更多
关键词 数据挖掘 聚类分析 k-means算法 模拟退火
在线阅读 下载PDF
基于均值与最大距离乘积的初始聚类中心优化K-means算法 被引量:17
8
作者 段桂芹 《计算机与数字工程》 2015年第3期379-382,共4页
针对K-means算法随机选择初始聚类中心所出现的样本聚类结果随机性强、稳定性低、容易陷入局部最优和得不到全局最优解等问题,提出一种基于均值与最大距离乘积的初始聚类中心优化K-means算法。该算法首先选择距离样本集均值最远的数据... 针对K-means算法随机选择初始聚类中心所出现的样本聚类结果随机性强、稳定性低、容易陷入局部最优和得不到全局最优解等问题,提出一种基于均值与最大距离乘积的初始聚类中心优化K-means算法。该算法首先选择距离样本集均值最远的数据对象加入聚类中心集合,再依次将与样本集均值和当前聚类中心乘积最大的数据对象加入聚类中心集合。标准数据集上的实验结果表明,与原始K-means的算法以及另一种改进算法相比,新提出的聚类算法具有更高的准确率。 展开更多
关键词 k-means聚类算法 均值 最大距离乘积 数据挖掘
在线阅读 下载PDF
基于Hadoop的灰狼优化K-means算法在主题发现的研究 被引量:2
9
作者 王林 陈青超 《微电子学与计算机》 2022年第4期24-32,共9页
快速准确的在海量网络数据中发现热点主题对于网络舆情监控具有重要作用.针对K-means算法对初始中心点选择敏感和全局搜索能力不足的问题,提出一种基于Hadoop的改进灰狼优化K-means的IGWO-KM算法.首先,该算法将灰狼优化算法和K-means算... 快速准确的在海量网络数据中发现热点主题对于网络舆情监控具有重要作用.针对K-means算法对初始中心点选择敏感和全局搜索能力不足的问题,提出一种基于Hadoop的改进灰狼优化K-means的IGWO-KM算法.首先,该算法将灰狼优化算法和K-means算法相结合,利用灰狼优化算法收敛速度快和可全局寻优的优势为K-means搜索最佳聚类中心,减小随机选取初始中心点而导致的聚类结果不稳定性,以获取更好的聚类结果.其次,使用非线性收敛因子改进灰狼优化算法,协调算法的全局和局部的搜索能力.然后,引入正弦余弦算法并进行改进,增强灰狼优化算法的全局搜索能力,优化寻优精度和收敛速度,避免陷入局部最优.之后,使用近邻空间球减少K-means聚类过程中冗余的距离计算加快算法收敛.最后,利用Hadoop集群可批量处理数据的特性,实现算法的并行化.实验结果表明,IGWO-KM算法具有更好的寻优精度和稳定性,相比于GWO-KM算法和K-means,该算法在查准率、召回率和F值均有明显提高,且具有良好的收敛速度和拓展性. 展开更多
关键词 文本聚类 k-means算法 主题发现 灰狼优化算法 分布式计算
在线阅读 下载PDF
基于Flink的鲸鱼优化K-Means算法 被引量:3
10
作者 于志良 《互联网周刊》 2023年第4期83-85,共3页
针对K-Means聚类算法依赖于初始聚类中心选择的问题,利用鲸鱼优化算法易于获取全局最优解及快速收敛性的优势,结合分布式框架的并行优势,提出了一种基于Flink的鲸鱼优化K-Means聚类算法。通过鲸鱼优化算法对领头鲸迭代更新、优化位置,... 针对K-Means聚类算法依赖于初始聚类中心选择的问题,利用鲸鱼优化算法易于获取全局最优解及快速收敛性的优势,结合分布式框架的并行优势,提出了一种基于Flink的鲸鱼优化K-Means聚类算法。通过鲸鱼优化算法对领头鲸迭代更新、优化位置,用算法的最优解作为聚类中心替代K-Means算法的随机聚类中心,改进后的算法聚类效果较好、收敛速度快,有效结合了智能算法及分布式框架的优势。 展开更多
关键词 聚类算法 k-means 鲸鱼优化 Flink
在线阅读 下载PDF
优化K-means算法在中国近海气候区划中的应用
11
作者 张慧 翟宇梅 《气象科技》 北大核心 2017年第4期750-755,共6页
利用我国近海多年的风、浪及温湿资料,采用DB指标和最大距离法相结合的优化K-means聚类算法,对冬季我国近海进行气候区划,避免了传统K-means算法中确定聚类数目和初始聚类中心的主观性。结果表明,冬季我国近海可被划分为3个区域:1区主... 利用我国近海多年的风、浪及温湿资料,采用DB指标和最大距离法相结合的优化K-means聚类算法,对冬季我国近海进行气候区划,避免了传统K-means算法中确定聚类数目和初始聚类中心的主观性。结果表明,冬季我国近海可被划分为3个区域:1区主要包括28°N以北的海域以及我国东南沿海的一条狭长区域,2区主要包括台湾周边海域、台湾海峡、巴士海峡以及自越南东南部起由西南部向东北部的南海大部分海域,3区则主要包括台湾岛西南部海域、北部湾、广东沿海以及南海东南部。根据给出的区划指标,分析各分区的气候特征及其对海上舰船航行和出海人员的影响,判定1区为基本适宜区,2区为不适宜区,3区为适宜区。 展开更多
关键词 DB指标 最大距离法 优化k-means聚类算法 中国近海 气候区划
在线阅读 下载PDF
一种实现微博兴趣挖掘的粒子群优化k-means算法 被引量:2
12
作者 沈超 王逊 黄树成 《计算机与数字工程》 2020年第8期1819-1823,共5页
针对k-means在聚类微博用户感兴趣话题时存在的问题,结合粒子群算法,提出一种学习因子、时间因子随惯性权重调整的MPSO-kmeans算法。该算法通过引入随惯性权重调整的学习因子,增强了惯性权重与学习因子之间的相互作用,提高了算法的全局... 针对k-means在聚类微博用户感兴趣话题时存在的问题,结合粒子群算法,提出一种学习因子、时间因子随惯性权重调整的MPSO-kmeans算法。该算法通过引入随惯性权重调整的学习因子,增强了惯性权重与学习因子之间的相互作用,提高了算法的全局搜索能力和局部寻优能力。在此基础上,引入线性飞行因子以减少粒子的震荡,近一步提高局部精度搜索能力。实验表明,该算法在聚类微博数据时,具有更好的寻优能力和聚类效果。 展开更多
关键词 k-means算法 粒子群优化算法 学习因子 惯性权重
在线阅读 下载PDF
改进樽海鞘群优化K-means算法的图像分割 被引量:5
13
作者 李志杰 王力 张习恒 《包装工程》 CAS 北大核心 2022年第9期207-216,共10页
目的针对樽海鞘群算法寻优精度低、易陷入到局部最优,以及K-means算法进行图像分割容易被初始聚类中心干扰等缺点,提出改进樽海鞘群优化K-means算法的图像分割。方法首先利用Circle映射来对樽海鞘种群进行初始化;其次引入莱维飞行到领... 目的针对樽海鞘群算法寻优精度低、易陷入到局部最优,以及K-means算法进行图像分割容易被初始聚类中心干扰等缺点,提出改进樽海鞘群优化K-means算法的图像分割。方法首先利用Circle映射来对樽海鞘种群进行初始化;其次引入莱维飞行到领导者和追随者位置更新公式中,使得樽海鞘种群的多样性得到提高,克服算法陷入到局部最优。最后,对改进樽海鞘群算法先采用8个基准函数进行性能测试;再将改进樽海鞘群算法优化K-means进行图像分割。结果改进算法在寻优精度、稳定性、收敛速度以及跳出局部最优的本领得到了提高。同时,改进樽海鞘群优化K-means算法进行图像分割,有效地提高了图像分割质量。结论改进算法改善了原始樽海鞘群算法的寻优精度低、易陷入到局部最优的缺点,很好地优化了K-means算法对图像进行准确分割,在图像分割领域具有一定的参考意义。 展开更多
关键词 樽海鞘群算法 Circle映射 Levy飞行 k-means 图像分割
在线阅读 下载PDF
基于PSO优化K-Means算法的边坡安全等级评价研究 被引量:4
14
作者 仲静文 郝利朋 周健 《水利规划与设计》 2020年第3期94-97,共4页
由于较多因素影响边坡的稳定,且各因素之间关系复杂相互影响,为了更加准确地评价边坡情况,采用了粒子群优化K-Means聚类算法,有效地摆脱了常规K-Means算法因局部最优而陷入极值的缺点,增加了粒子群群体的多样性,提高了评价结果的全局最... 由于较多因素影响边坡的稳定,且各因素之间关系复杂相互影响,为了更加准确地评价边坡情况,采用了粒子群优化K-Means聚类算法,有效地摆脱了常规K-Means算法因局部最优而陷入极值的缺点,增加了粒子群群体的多样性,提高了评价结果的全局最优性。对三峡库区的36个边坡工程分析,结果表明该优化算法优于常规K-Means聚类算法。 展开更多
关键词 粒子群算法 k-means聚类 边坡稳定 安全评价
在线阅读 下载PDF
优化K-means算法在客户细分中的应用研究 被引量:1
15
作者 童婉迪 《景德镇学院学报》 2021年第3期21-24,49,共5页
结合聚类有效性指标SD和粒子群算法对传统的K-means算法在K值选取与初始中心点选取方面的缺点进行优化,通过比较聚类有效性指标,证明优化后的K-means算法的聚类效果优于传统的K-means算法。并将优化后的K-means算法应用于携程网线上酒... 结合聚类有效性指标SD和粒子群算法对传统的K-means算法在K值选取与初始中心点选取方面的缺点进行优化,通过比较聚类有效性指标,证明优化后的K-means算法的聚类效果优于传统的K-means算法。并将优化后的K-means算法应用于携程网线上酒店预订的客户数据中,解决线上预订酒店客户的细分问题,根据聚类结果制定适合不同客户簇的精准营销策略。 展开更多
关键词 粒子群算法 k-means 客户细分
在线阅读 下载PDF
基于K-means与2-Opt改进的贪心路径优化算法研究
16
作者 黄启华 冯子俊 +1 位作者 杜玉晓 王烁哲 《自动化与信息工程》 2025年第2期9-17,共9页
针对当前衣物裁剪路径优化算法无法同时满足高精度和低时间消耗的问题,提出基于K-means与2-Opt改进的贪心路径优化算法。首先,利用K-means聚类算法进行大规模旅行商问题的局部分组;然后,采用2-Opt改进的贪心算法优化路径;最后,通过最近... 针对当前衣物裁剪路径优化算法无法同时满足高精度和低时间消耗的问题,提出基于K-means与2-Opt改进的贪心路径优化算法。首先,利用K-means聚类算法进行大规模旅行商问题的局部分组;然后,采用2-Opt改进的贪心算法优化路径;最后,通过最近邻连接方法对子问题的解进行类间连接。实验结果验证了该算法具有较好的路径和效率优化能力。 展开更多
关键词 衣物裁剪路径优化 k-means聚类算法 2-Opt算法 贪心算法
在线阅读 下载PDF
基于离群点检测的优化初始中心的三支K-Means算法
17
作者 樊有明 李志聪 《计算机科学与应用》 2025年第2期118-131,共14页
针对传统的k-means算法的聚类数目k无法确定、初始聚类中心随机给定、容易受到离群点影响等问题,该算法使用LOF (Local Outlier Factor)离群点检测算法计算数据集中每个数据对象的离群因子,并去除离群因子大于指定阈值的数据对象,使用... 针对传统的k-means算法的聚类数目k无法确定、初始聚类中心随机给定、容易受到离群点影响等问题,该算法使用LOF (Local Outlier Factor)离群点检测算法计算数据集中每个数据对象的离群因子,并去除离群因子大于指定阈值的数据对象,使用手肘法来确定符合数据集的最佳k值,根据最大密度和最大距离的思想结合每个点的离群因子来选取初始聚类中心并进行后续聚类中心的迭代,聚类完成后结合三支决策的思想对聚类结果的每个簇内的数据对象进行进一步优化。实验结果表明ODT-kmeans算法能合理选取k值、减少离群点的影响并且可以消除随机选择初始聚类中心的问题,提高了k-means聚类算法的准确率。In view of the problems of the traditional k-means algorithm, such as the number of clusters k cannot be determined, the initial cluster center is randomly given, and it is easily affected by outliers, this algorithm uses the LOF (Local Outlier Factor) outlier detection algorithm to calculate the outlier factor of each data object in the data set and remove the data objects whose outlier factor is greater than the specified threshold. The elbow method is used to determine the best k value that meets the data set. The initial cluster center is selected based on the idea of maximum density and maximum distance combined with the outlier factor of each point and the subsequent cluster center iterations are performed. After clustering is completed, the idea of three-way decision is combined to further optimize the data objects in each cluster of the clustering results. Experimental results show that the ODT-kmeans algorithm can reasonably select the k value, reduce the influence of outliers, and eliminate the problem of randomly selecting the initial cluster center, thereby improving the accuracy of the k-means clustering algorithm. 展开更多
关键词 k-means算法 三支聚类 LOF离群点检测算法 聚类中心
在线阅读 下载PDF
WWCD优化Canopy-K-means的雷达信号分选算法
18
作者 王之腾 李尚远 +2 位作者 纪存孝 刘畅 严子路 《陆军工程大学学报》 2025年第1期20-26,共7页
雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的... 雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。 展开更多
关键词 雷达信号分选 水波中心扩散优化 Canopy算法 k-means算法
在线阅读 下载PDF
基于几何的K-means初始聚类中心优化算法研究
19
作者 周晓东 董海清 +2 位作者 张昆鹏 侯俊丞 孙树峰 《仪表技术》 2025年第2期66-69,73,共5页
传统的K-means算法对初始聚类中心较为敏感,聚类结果随初始输入不同而波动显著,且易陷入局部最优解。为消除该敏感性,提出了一种改进初始聚类中心选取的新方法。运用主成分分析将高维数据降至平面二维,随后计算每个数据对象的欧氏距离... 传统的K-means算法对初始聚类中心较为敏感,聚类结果随初始输入不同而波动显著,且易陷入局部最优解。为消除该敏感性,提出了一种改进初始聚类中心选取的新方法。运用主成分分析将高维数据降至平面二维,随后计算每个数据对象的欧氏距离与向量角度参数,建立距离角度混合评价模型,选取k个分散性最高的数据点作为初始聚类中心。实验结果表明,该算法对处理高维数据具有一定的优越性,尤其对非簇状数据集能产生较优的聚类结果,并且消除了初始输入的敏感性。 展开更多
关键词 聚类中心 k-means算法 欧氏距离 角度参数
在线阅读 下载PDF
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术
20
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 k-means算法 反向传播神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部