考虑如下代数特征值反问题: 问题 G(A;{A_k}_1~n;λ).设 A=(a_(ij)),A_k=(a_(ij)^((k))),k=1,…,n是n+1个n×n的实对称矩阵,λ=(λ_1,…,λ_n)是n维实向量且λ_i≠λ_j,i≠j.求n维实向量c=(c_1,…,c_n)~T,使矩阵A(c)=A+sum from k=1...考虑如下代数特征值反问题: 问题 G(A;{A_k}_1~n;λ).设 A=(a_(ij)),A_k=(a_(ij)^((k))),k=1,…,n是n+1个n×n的实对称矩阵,λ=(λ_1,…,λ_n)是n维实向量且λ_i≠λ_j,i≠j.求n维实向量c=(c_1,…,c_n)~T,使矩阵A(c)=A+sum from k=1 to n (c_kA_k)的特征值是λ_1,…,λ_n. 这一问题是经典加法问题的推广.当A_k-e_ke_k~~T(e_k是n阶单位阵的第k列)时,展开更多
文摘考虑如下代数特征值反问题: 问题 G(A;{A_k}_1~n;λ).设 A=(a_(ij)),A_k=(a_(ij)^((k))),k=1,…,n是n+1个n×n的实对称矩阵,λ=(λ_1,…,λ_n)是n维实向量且λ_i≠λ_j,i≠j.求n维实向量c=(c_1,…,c_n)~T,使矩阵A(c)=A+sum from k=1 to n (c_kA_k)的特征值是λ_1,…,λ_n. 这一问题是经典加法问题的推广.当A_k-e_ke_k~~T(e_k是n阶单位阵的第k列)时,