针对人体肩关节运动障碍的康复训练需求,提出一种3R-PU型串联肩关节康复外骨骼机构,可以实现肩关节的内收/外展、前屈/后伸和内旋/外旋运动。通过在人机界面引入被动关节P和U,使外骨骼机构与上臂形成的人机闭链转化为3-DOF运动学恰约束...针对人体肩关节运动障碍的康复训练需求,提出一种3R-PU型串联肩关节康复外骨骼机构,可以实现肩关节的内收/外展、前屈/后伸和内旋/外旋运动。通过在人机界面引入被动关节P和U,使外骨骼机构与上臂形成的人机闭链转化为3-DOF运动学恰约束系统,实现外骨骼机构与人体上臂的运动学相容。基于人体肩部各关节间的运动耦合分析,得到盂肱关节转心(Center of glenohumeral,CGH)在上臂抬升过程中相对于胸骨的位置变化关系。通过建立人机闭链的运动学模型,并进行位置逆解析,得到外骨骼机构各运动副的角位移变化曲线;同时,推导了人机闭链的速度雅可比矩阵,进行了运动灵活性分析。结果表明:被动关节P和U的运动幅度均较大,引入被动关节有益于解除人机界面处的运动约束,进而降低人机之间的约束强度;当上臂在0°、45°、90°和135°抬升面内运动时,外骨骼机构具有较好的运动灵活性。研究结果为外骨骼机构的运动规划与控制提供了分析依据。展开更多
To reduce the complexity of the configuration and control strategy for shoulder rehabilitation exoskeleton,a 2R1R1P2R serial of shoulder exoskeleton based on gravity balance is proposed.Based on three basic rotatory s...To reduce the complexity of the configuration and control strategy for shoulder rehabilitation exoskeleton,a 2R1R1P2R serial of shoulder exoskeleton based on gravity balance is proposed.Based on three basic rotatory shoulder joints,an exact kinematic constraint system can be formed between the exoskeleton and the upper arm by introducing a passive sliding pair and a center of glenohumeral(CGH)unpowered compensation mechanism,which realizes the human-machine kinematic compatibility.Gravity balance is used in the CGH compensation mechanism to provide shoulder joint support.Meanwhile,the motion of the compensation mechanism is pulled by doing reverse leading through the arm to realize the kinematic self-adaptive,which decreases control complexity.Besides,a simple and intuitive spring adjustment strategy is proposed to ensure the gravity balance of any prescribed quality.Furthermore,according to the influencing factors analysis of the scapulohumeral rhythm,the kinematic analysis of CGH mechanism is performed,which shows that the mechanism can fit the trajectory of CGH under various conditions.Finally,the dynamic simulation of the mechanism is carried out.Results indicate that the compensation torques are reduced to below 0.22 N·m,and the feasibility of the mechanism is also verified.展开更多
文摘针对人体肩关节运动障碍的康复训练需求,提出一种3R-PU型串联肩关节康复外骨骼机构,可以实现肩关节的内收/外展、前屈/后伸和内旋/外旋运动。通过在人机界面引入被动关节P和U,使外骨骼机构与上臂形成的人机闭链转化为3-DOF运动学恰约束系统,实现外骨骼机构与人体上臂的运动学相容。基于人体肩部各关节间的运动耦合分析,得到盂肱关节转心(Center of glenohumeral,CGH)在上臂抬升过程中相对于胸骨的位置变化关系。通过建立人机闭链的运动学模型,并进行位置逆解析,得到外骨骼机构各运动副的角位移变化曲线;同时,推导了人机闭链的速度雅可比矩阵,进行了运动灵活性分析。结果表明:被动关节P和U的运动幅度均较大,引入被动关节有益于解除人机界面处的运动约束,进而降低人机之间的约束强度;当上臂在0°、45°、90°和135°抬升面内运动时,外骨骼机构具有较好的运动灵活性。研究结果为外骨骼机构的运动规划与控制提供了分析依据。
基金The National Natural Science Foundation of China(No.51675098)。
文摘To reduce the complexity of the configuration and control strategy for shoulder rehabilitation exoskeleton,a 2R1R1P2R serial of shoulder exoskeleton based on gravity balance is proposed.Based on three basic rotatory shoulder joints,an exact kinematic constraint system can be formed between the exoskeleton and the upper arm by introducing a passive sliding pair and a center of glenohumeral(CGH)unpowered compensation mechanism,which realizes the human-machine kinematic compatibility.Gravity balance is used in the CGH compensation mechanism to provide shoulder joint support.Meanwhile,the motion of the compensation mechanism is pulled by doing reverse leading through the arm to realize the kinematic self-adaptive,which decreases control complexity.Besides,a simple and intuitive spring adjustment strategy is proposed to ensure the gravity balance of any prescribed quality.Furthermore,according to the influencing factors analysis of the scapulohumeral rhythm,the kinematic analysis of CGH mechanism is performed,which shows that the mechanism can fit the trajectory of CGH under various conditions.Finally,the dynamic simulation of the mechanism is carried out.Results indicate that the compensation torques are reduced to below 0.22 N·m,and the feasibility of the mechanism is also verified.