A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The prin...A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.展开更多
Many methods to calculate the consolidation coefficient of soil depend on judgment of testing curves of consolidation, and the calculation result is influenced by artificial factors. In this work, based on the main pr...Many methods to calculate the consolidation coefficient of soil depend on judgment of testing curves of consolidation, and the calculation result is influenced by artificial factors. In this work, based on the main principle of back propagation neural network, a neural network model to determine the consolidation coefficient is established. The essence of the method is to simulate a serial of compression ratio and time factor curves because the neural network is able to process the nonlinear problems. It is demonstrated that this BP model has high precision and fast convergence. Such method avoids artificial influence factor successfully and is adapted to computer processing.展开更多
Bionic optimisation is one of the most popular and efficient applications of bionic engineering. As there are many different approaches and terms being used, we try to come up with a structuring of the strategies and ...Bionic optimisation is one of the most popular and efficient applications of bionic engineering. As there are many different approaches and terms being used, we try to come up with a structuring of the strategies and compare the efficiency of the different methods. The methods mostly proposed in literature may be classified into evolutionary, particle swarm and artificial neural net optimisation. Some related classes have to be mentioned as the non-sexual fern optimisation and the response surfaces, which are close to the neuron nets. To come up with a measure of the efficiency that allows to take into account some of the published results the technical optimisation problems were derived from the ones given in literature. They deal with elastic studies of frame structures, as the computing time for each individual is very short. General proposals, which approach to use may not be given. It seems to be a good idea to learn about the applicability of the different methods at different problem classes and then do the optimisation according to these experiences. Furthermore in many cases there is some evidence that switching from one method to another improves the performance. Finally the identification of the exact position of the optimum by gradient methods is often more efficient than long random walks around local maxima.展开更多
文摘A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.
文摘Many methods to calculate the consolidation coefficient of soil depend on judgment of testing curves of consolidation, and the calculation result is influenced by artificial factors. In this work, based on the main principle of back propagation neural network, a neural network model to determine the consolidation coefficient is established. The essence of the method is to simulate a serial of compression ratio and time factor curves because the neural network is able to process the nonlinear problems. It is demonstrated that this BP model has high precision and fast convergence. Such method avoids artificial influence factor successfully and is adapted to computer processing.
文摘Bionic optimisation is one of the most popular and efficient applications of bionic engineering. As there are many different approaches and terms being used, we try to come up with a structuring of the strategies and compare the efficiency of the different methods. The methods mostly proposed in literature may be classified into evolutionary, particle swarm and artificial neural net optimisation. Some related classes have to be mentioned as the non-sexual fern optimisation and the response surfaces, which are close to the neuron nets. To come up with a measure of the efficiency that allows to take into account some of the published results the technical optimisation problems were derived from the ones given in literature. They deal with elastic studies of frame structures, as the computing time for each individual is very short. General proposals, which approach to use may not be given. It seems to be a good idea to learn about the applicability of the different methods at different problem classes and then do the optimisation according to these experiences. Furthermore in many cases there is some evidence that switching from one method to another improves the performance. Finally the identification of the exact position of the optimum by gradient methods is often more efficient than long random walks around local maxima.