及时准确的交通预测对城市交通控制和引导至关重要。由于交通数据的复杂性和非平稳变化,传统的预测方法不能满足中长期预测任务的要求,往往忽略了交通流的时空依赖性。文章采用了一种新的深度学习框架——动态图卷积网络(DGCN)来解决交...及时准确的交通预测对城市交通控制和引导至关重要。由于交通数据的复杂性和非平稳变化,传统的预测方法不能满足中长期预测任务的要求,往往忽略了交通流的时空依赖性。文章采用了一种新的深度学习框架——动态图卷积网络(DGCN)来解决交通领域的时间序列预测问题。我们没有使用常规的卷积和循环单元,而是在图上表达问题,该网络引入潜在网络提取时空特征,用于自适应构建动态路网图矩阵。实验表明,我们的模型DGCN有效捕获了全面的时空相关性,并在各种真实交通数据集上始终优于最先进的基线。Timely and accurate traffic forecasting is very important for urban traffic control and guidance. Due to the complexity and non-stationary changes of traffic data, traditional forecasting methods can not meet the requirements of medium and long-term forecasting tasks and often ignore the temporal and spatial dependence of traffic flow. In this paper, a new deep learning framework—Dynamic Graph Convolution Network (DGCN), is adopted to solve the problem of time series prediction in the traffic field. We don’t use the conventional convolution and circulation unit, but express the problem on the graph. The network introduces the potential network to extract the spatio-temporal features and is used to adaptively construct the dynamic road network graph matrix. Experiments show that our model DGCN effectively captures the comprehensive spatial-temporal correlation and is always superior to the most advanced baseline on various real traffic data sets.展开更多
交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,...交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,导致较长的计算时间和较高的算力成本,因此,如何使用低计算成本的预测模型来满足广泛的流量预测需求是重要的技术挑战.近年来兴起的提示微调范式在自然语言处理的下游任务推广中取得了较好的效果,受其启发,提出利用少量的实时数据来微调优化大规模历史数据预训练的模型,为交通流量模型预测的优化应用提出了一种新的思路.通过引入图提示微调的交通流量预测(traffic flow prediction based on graph prompt-finetuning,TPGPF)模型的泛化能力,在时空多维度下的交通流量图预测模型中,基于历史数据集进行预测模型的预训练,并引入可学习的提示向量,在预训练模型固化的情况下指导预训练的自监督学习模型,以适应新的数据预测任务,提升交通流量预测模型的通用性和有效性.通过在5个公开数据集上进行了大量的实验,证明了TPGPF的有效性.展开更多
文摘及时准确的交通预测对城市交通控制和引导至关重要。由于交通数据的复杂性和非平稳变化,传统的预测方法不能满足中长期预测任务的要求,往往忽略了交通流的时空依赖性。文章采用了一种新的深度学习框架——动态图卷积网络(DGCN)来解决交通领域的时间序列预测问题。我们没有使用常规的卷积和循环单元,而是在图上表达问题,该网络引入潜在网络提取时空特征,用于自适应构建动态路网图矩阵。实验表明,我们的模型DGCN有效捕获了全面的时空相关性,并在各种真实交通数据集上始终优于最先进的基线。Timely and accurate traffic forecasting is very important for urban traffic control and guidance. Due to the complexity and non-stationary changes of traffic data, traditional forecasting methods can not meet the requirements of medium and long-term forecasting tasks and often ignore the temporal and spatial dependence of traffic flow. In this paper, a new deep learning framework—Dynamic Graph Convolution Network (DGCN), is adopted to solve the problem of time series prediction in the traffic field. We don’t use the conventional convolution and circulation unit, but express the problem on the graph. The network introduces the potential network to extract the spatio-temporal features and is used to adaptively construct the dynamic road network graph matrix. Experiments show that our model DGCN effectively captures the comprehensive spatial-temporal correlation and is always superior to the most advanced baseline on various real traffic data sets.
文摘交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,导致较长的计算时间和较高的算力成本,因此,如何使用低计算成本的预测模型来满足广泛的流量预测需求是重要的技术挑战.近年来兴起的提示微调范式在自然语言处理的下游任务推广中取得了较好的效果,受其启发,提出利用少量的实时数据来微调优化大规模历史数据预训练的模型,为交通流量模型预测的优化应用提出了一种新的思路.通过引入图提示微调的交通流量预测(traffic flow prediction based on graph prompt-finetuning,TPGPF)模型的泛化能力,在时空多维度下的交通流量图预测模型中,基于历史数据集进行预测模型的预训练,并引入可学习的提示向量,在预训练模型固化的情况下指导预训练的自监督学习模型,以适应新的数据预测任务,提升交通流量预测模型的通用性和有效性.通过在5个公开数据集上进行了大量的实验,证明了TPGPF的有效性.