期刊文献+
共找到598篇文章
< 1 2 30 >
每页显示 20 50 100
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
1
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测
2
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归机
在线阅读 下载PDF
基于总体经验模态分解法的爆炸分离冲击数据分析和处理
3
作者 封雷 刘曦 +2 位作者 解龙 贺旋 宁晶 《装备环境工程》 2025年第3期1-7,共7页
目的对炮弹发射过程的实测异常大量值爆炸分离冲击数据进行分析与处理,准确获取真实的发射冲击信号。方法利用基于总体经验模态分解法(EEMD)对实测爆炸分离冲击数据进行处理,通过自适应构造冲击数据的模态分量,剔除原始数据中的趋势项... 目的对炮弹发射过程的实测异常大量值爆炸分离冲击数据进行分析与处理,准确获取真实的发射冲击信号。方法利用基于总体经验模态分解法(EEMD)对实测爆炸分离冲击数据进行处理,通过自适应构造冲击数据的模态分量,剔除原始数据中的趋势项。结果通过对某型炮弹发射过程的爆炸分离冲击数据进行处理,有效剔除了冲击信号中的趋势项,准确得到真实的时域信号和冲击响应谱曲线。结论该研究能够为实测异常冲击数据时频域处理提供一种有效的方法。 展开更多
关键词 总体经验模态分解 爆炸分离冲击 模态分量 冲击响应谱 零位漂移 放大器饱和
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
4
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
在线阅读 下载PDF
基于总体平均经验模态分解的主动噪声控制系统研究 被引量:4
5
作者 罗磊 黄博妍 +1 位作者 孙金玮 温良 《自动化学报》 EI CSCD 北大核心 2016年第9期1432-1439,共8页
为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intr... 为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intrinsic mode functions,IMF)分量.因为这些IMF分量的频带各不相同,所以实现了混合噪声中宽带分量和窄带分量的有效分离,独立进行ANC处理后成功解决了处理混合噪声时带来的"火花"现象,而且避免了传统混合ANC(Hybrid ANC,HANC)系统中频率失调的影响.EEMD算法也是对混合噪声的平稳化处理过程,因此当混合噪声中出现非平稳变化时,本文提出的系统也能保持较好的系统稳定性.通过不同噪声环境下进行仿真分析,提出的ANC系统比HANC系统具有更好的系统稳定性和更小的稳态误差. 展开更多
关键词 混合噪声 主动噪声控制 总体平均经验模态分解 固有模态函数 非平稳变化
在线阅读 下载PDF
基于总体平均经验模态分解残差的故障诊断方法 被引量:3
6
作者 耿志强 王尊 +1 位作者 顾祥柏 林晓勇 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期293-300,共8页
为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差... 为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差的故障诊断控制限。利用在线实时数据采用贝叶斯信息准则在线确定EEMD的移动窗口。基于移动窗口的采样数据,在线获得EEMD残差最大值的变化,结合相应的故障诊断控制限在线诊断故障并确定故障发生时间及原因。该文方法与传统的希尔伯特谱分析方法相比,具有可在线诊断故障的优势,提高了故障诊断的准确率。将该文方法用于田纳西-伊士曼(TE)过程的故障在线诊断,验证了其有效性。 展开更多
关键词 总体平均经验模态分解 残差 故障诊断 贝叶斯信息准则 希尔伯特谱 田纳西-伊士曼过程
在线阅读 下载PDF
基于总体平均经验模态分解的语音增强算法研究 被引量:4
7
作者 陈建明 杨龙 《计算机应用与软件》 2017年第9期328-333,共6页
总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD... 总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD和结合小波阈值去噪思想,提出改进的EEMD方法。首先对原始信号进行EEMD分解,得到一系列IMF分量;其次对筛选后的每个IMF计算噪声强度;然后采用小波启发式阈值估计噪声并计算阈值;最后以软阈值的方式滤除每个IMF中噪声并重构信号还原出增强的语音。通过分析仿真信号和实测信号,结果表明:该算法对带噪语音有很好的滤波效果,与其他同类算法相比提高信噪比2~4 d B。 展开更多
关键词 总体平均经验模态分解(EEMD) 小波阈值去噪 语音增强算法
在线阅读 下载PDF
基于总体平均经验模态分解和一步式字典学习联合去噪的语音端点检测算法 被引量:3
8
作者 张开生 赵小芬 +1 位作者 王泽 宋帆 《科学技术与工程》 北大核心 2020年第35期14536-14542,共7页
针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先... 针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先利用EEMD算法对输入语音进行分解得到本征模式分量(intrinsic mode function,IMF),然后使用OS-DL算法分别对纯净语音信号与噪声信号进行训练,得到纯净语音信号和噪声信号的幅度谱字典,进而对幅度谱进行稀疏表示,利用得到的系数矩阵重新构建出语音信号频谱,将重构出的语音信号频谱经过傅里叶逆变换得到降噪后的语音信号,最后对降噪后的语音信号利用均匀子带频带方差法进行端点检测。实验结果表明,该算法在复杂环境信噪比低于-10 dB情况下检测准确率仍可达到85%以上,且平均检测时间缩短至传统端点检测算法的1/3。 展开更多
关键词 总体平均经验模态分解(EEMD)算法 一步式字典(OS-DL)算法 稀疏表示 子带频带方差 端点检测
在线阅读 下载PDF
基于总体平均经验模态分解的局部场电位相位同步信息编码研究
9
作者 师黎 吴孔海 +1 位作者 王治忠 牛晓可 《科学技术与工程》 北大核心 2013年第28期8249-8258,共10页
局部场电位的相位特征是表达外界刺激信息的重要度量,对神经信息的传递与表达具有重要作用。以Long Evans大鼠为实验对象,以12个朝向的全屏光栅作为刺激图像,用多通道微电极阵列信号采集系统获取局部场电位信号。采用总体平均经验模态... 局部场电位的相位特征是表达外界刺激信息的重要度量,对神经信息的传递与表达具有重要作用。以Long Evans大鼠为实验对象,以12个朝向的全屏光栅作为刺激图像,用多通道微电极阵列信号采集系统获取局部场电位信号。采用总体平均经验模态分解的方法获取局部场电位的不同分量,通过Hilbert提取不同分量的瞬时相位,用相位锁定值来进行相位同步分析。结果发现局部场电位采用总体平均经验模态分解后,主频带范围在40 Hz^100 Hz之间的第三固有模态分量具有最佳的朝向选择性,且编码精度和稳定性均优于经验模态分解和γ频带提取的结果。 展开更多
关键词 局部场电位 总体平均经验模态分解 光栅 相位同步
在线阅读 下载PDF
基于互补集合平均经验模态分解的滚动轴承故障诊断方法研究 被引量:3
10
作者 张萍 李志农 +1 位作者 陈静铃 杨诚 《南昌航空大学学报(自然科学版)》 CAS 2019年第2期7-12,49,共7页
针对集合经验模态分解(EEMD)的机械故障诊断方法中存在的不足,即其加入的白噪声不能完全被中和。为了克服其不足,提出了基于互补集合经验模态分解(CEEMD)的滚动轴承故障诊断方法,提出的方法很好地克服了EEMD中存在的不足,有效地消除了IM... 针对集合经验模态分解(EEMD)的机械故障诊断方法中存在的不足,即其加入的白噪声不能完全被中和。为了克服其不足,提出了基于互补集合经验模态分解(CEEMD)的滚动轴承故障诊断方法,提出的方法很好地克服了EEMD中存在的不足,有效地消除了IMF中的残留噪声。仿真结果表明:提出的方法明显优于EEMD方法,可以减少重构误差,提取较为准确的IMF分量。最后,将CEEMD方法应用到滚动轴承故障诊断中,实验结果表明,CEEMD方法能准确的提取滚动轴承的特征故障频率。 展开更多
关键词 互补集合经验模态分解(CEEMD) 故障诊断 滚动轴承
在线阅读 下载PDF
一种基于总体平均经验模态分解的线谱提取方法 被引量:2
11
作者 刘千里 《舰船电子工程》 2020年第6期40-42,88,共4页
为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船... 为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船辐射噪声仿真信号分析,该方法能有效地提取舰船辐射噪声的线谱,与小波分析方法进行对比分析后表明,EEMD对信号的分析比小波分析有一定的优越性,而且因EEMD能够突出信号局部特征,对线谱能量有一定的增益。 展开更多
关键词 总体平均经验模态分解 辐射噪声 小波变换 线谱
在线阅读 下载PDF
完全互补小波噪声辅助集总经验模态分解 被引量:19
12
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 集合经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
在线阅读 下载PDF
总体平均经验模式分解与1.5维谱方法的研究 被引量:71
13
作者 陈略 訾艳阳 +1 位作者 何正嘉 成玮 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第5期94-98,共5页
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方... 针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 展开更多
关键词 总体平均经验模式分解 1.5维谱 特征提取 齿轮裂纹故障
在线阅读 下载PDF
云平台下并行总体经验模态分解局部放电信号去噪方法 被引量:20
14
作者 宋亚奇 周国亮 +2 位作者 朱永利 李莉 王德文 《电工技术学报》 EI CSCD 北大核心 2015年第18期213-222,共10页
信号去噪是对输变电设备进行在线监测和诊断时首要解决的问题。鉴于总体经验模态分解(EEMD)方法对局部放电信号进行去噪的优势,设计了基于Map Reduce模型的并行化EEMD算法(MR-EEMD),利用云平台提高算法的计算效率。在对分段包络线进行... 信号去噪是对输变电设备进行在线监测和诊断时首要解决的问题。鉴于总体经验模态分解(EEMD)方法对局部放电信号进行去噪的优势,设计了基于Map Reduce模型的并行化EEMD算法(MR-EEMD),利用云平台提高算法的计算效率。在对分段包络线进行重构时,针对矩形窗的固有缺陷,提出了基于局部平稳度的自适应分段包络线重构算法(LF-ASER)进行分段边界的补偿处理,使重构的包络线误差减小到给定阈值范围内。实验结果表明MR-EEMD算法相对于EEMD性能提升显著,适合处理变压器的局部放电等高采样率信号,同时保持了EEMD去噪效果,并获得较高的可扩展性和加速比。 展开更多
关键词 局部放电 信号去噪 总体经验模态分解 MAPREDUCE 包络线重构
在线阅读 下载PDF
自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用 被引量:45
15
作者 雷亚国 孔德同 +1 位作者 李乃鹏 林京 《机械工程学报》 EI CAS CSCD 北大核心 2014年第3期64-70,共7页
总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模... 总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模式混淆的目的。然而,EEMD分解效果取决于添加噪声的幅值、筛选次数等参数的选择。目前的研究通常是人为选择这些参数,具有较大的盲目性和主观性,因此分解结果差强人意。为了解决以上问题,提出一种新的自适应总体平均经验模式分解方法。该方法基于EMD的滤波特性,在提取本征模式分量(Intrinsic mode function,IMF)的过程中自适应改变加入噪声的幅值,并对每个IMF自动选择不同的筛选次数,可以更好地削弱模式混淆。通过仿真试验验证了该方法的有效性,并将该方法应用于行星轮故障检测中,取得了比EEMD更好的故障检测结果。 展开更多
关键词 自适应总体平均经验模式分解 行星齿轮箱 故障检测
在线阅读 下载PDF
基于总体经验模态分解的多类特征的运动想象脑电识别方法研究 被引量:33
16
作者 杨默涵 陈万忠 李明阳 《自动化学报》 EI CSCD 北大核心 2017年第5期743-752,共10页
人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强... 人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法. 展开更多
关键词 脑电信号 运动想象 总体经验模态分解 线性判别分类器
在线阅读 下载PDF
基于总体平均经验模式分解近似熵和混合PSO-BP算法的轴承故障诊断方法 被引量:9
17
作者 张淑清 黄文静 +3 位作者 胡永涛 宿新爽 陆超 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3048-3054,共7页
针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP... 针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP神经网络的权值和阈值,解决BP网络的全局收敛问题。将信号经EEMD得到的IMF分量与近似熵结合,组成特征向量,再将构造的特征向量输入到PSO-BP神经网络中进行模式识别。实验及工程应用实例证明了该方法的有效性和优越性。 展开更多
关键词 轴承 故障诊断 总体平均经验模式分解 近似熵 混合粒子群神经网络
在线阅读 下载PDF
运用总体经验模态分解的疲劳信号降噪方法 被引量:28
18
作者 陈隽 李想 《振动.测试与诊断》 EI CSCD 北大核心 2011年第1期15-19,125,共5页
将总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)用于疲劳应变信号降噪,并与小波变换(wavelet transform,简称WT)方法进行了对比。提出了基于EEMD方法的疲劳应变信号降噪计算步骤,并分别用于模拟信号、试验数据和... 将总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)用于疲劳应变信号降噪,并与小波变换(wavelet transform,简称WT)方法进行了对比。提出了基于EEMD方法的疲劳应变信号降噪计算步骤,并分别用于模拟信号、试验数据和实测资料的降噪处理。讨论了EEMD计算参数对降噪效果的影响,给出了计算参数的选取原则。结果表明,EEMD方法可以较好地降低疲劳信号的噪声,提高应力循环次数统计的准确度,具有自适应的特点。 展开更多
关键词 总体经验模态分解 疲劳信号 降噪 小波变换
在线阅读 下载PDF
基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测 被引量:51
19
作者 赵会茹 赵一航 郭森 《中国电力》 CSCD 北大核心 2020年第6期48-55,共8页
随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的... 随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。 展开更多
关键词 短期电力负荷预测 长短期记忆网络 互补集合经验模态分解 深度学习
在线阅读 下载PDF
采用改进互补集总经验模态分解的电能质量扰动检测方法 被引量:7
20
作者 吴新忠 邢强 +2 位作者 陈明 成江洋 杨春雨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第9期1834-1843,共10页
针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采... 针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采用高频辅助分解的优势,并以极值点分布特性作为评价指标自适应选择最优加噪频率.通过对EEMD加噪准则的研究,推导出加噪幅值和分解次数采取固定值:0.01SD和2次,且以正负成对的形式加入到原始信号中.通过仿真实验和搭建的电能质量扰动平台的实测数据验证了所提方法的自适应性和计算性能,而且适用于电能质量扰动检测与分析. 展开更多
关键词 集总经验模态分解(EEMD) 自适应快速互补EEMD(AFCEEMD) 极值点分布 加噪频率参数优化 电能质量扰动
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部