The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i...The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.展开更多
Different sized single droplets of Cu-6%Sn alloy were prepared by drop on demand(DOD)technique.The secondarydendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula.Th...Different sized single droplets of Cu-6%Sn alloy were prepared by drop on demand(DOD)technique.The secondarydendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula.The microstructure ofdroplets was observed by optical microscopy(OM)and electro backscatter diffraction(EBSD).The dendrite feature of singledroplets depends on solidification rate,cooling medium and flight distance.When droplets collide with each other at temperaturesbetween solidus and liquidus,the dendrites and grains are refined obviously possibly because the collision enhances the heat transfer.The cooling rate of colliding droplets is estimated to be more than4×104K/s based on a Newton’s cooling model.The dendritesgrow along the colliding direction because of the temperature gradient induced by the internal flow inside the droplets.展开更多
Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary coolin...Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting.展开更多
基金The National Natural Science Foundation of China (No.50976022)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period (No.2008BAJ12B02)
文摘The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.
基金Project(51301143)supported by the National Natural Science Foundation of ChinaProject(2014M560727)supported by the National Postdoctoral Foundation of China+1 种基金Project(2015GZ0228)supported by the Sichuan Province Science-Technology Support Plan,ChinaProject(2682014CX001)supported by the Science and Technology Innovation Project of SWJTU University,China
文摘Different sized single droplets of Cu-6%Sn alloy were prepared by drop on demand(DOD)technique.The secondarydendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula.The microstructure ofdroplets was observed by optical microscopy(OM)and electro backscatter diffraction(EBSD).The dendrite feature of singledroplets depends on solidification rate,cooling medium and flight distance.When droplets collide with each other at temperaturesbetween solidus and liquidus,the dendrites and grains are refined obviously possibly because the collision enhances the heat transfer.The cooling rate of colliding droplets is estimated to be more than4×104K/s based on a Newton’s cooling model.The dendritesgrow along the colliding direction because of the temperature gradient induced by the internal flow inside the droplets.
基金supported by the National Key Basic Research and Devel-opment Program of China("973"Project)(Grant No.2012CB720405)the National Natural Science Foundation of China(Grant Nos.51176203 and 51206184)the Natural Science Foundation of Hubei Province(Grant No.2012FFB06905)
文摘Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting.