讨论了一类如下的三阶常微分方程m点边值问题{u'''(t)+h(t)f(u)=0,u(0)=u'(0)=0,u(1)=sum from i=1 to(m-2)βiu(ηi)正解的存在性.其中η_i∈(0,1),0<η_1<η_2<…<η_(m-2)<1,β_i∈[0,∞)且sum from ...讨论了一类如下的三阶常微分方程m点边值问题{u'''(t)+h(t)f(u)=0,u(0)=u'(0)=0,u(1)=sum from i=1 to(m-2)βiu(ηi)正解的存在性.其中η_i∈(0,1),0<η_1<η_2<…<η_(m-2)<1,β_i∈[0,∞)且sum from i=1 to(m-2)βiηi2<1.通过与一个线性算子相关的第一特征值的讨论,运用不动点指数定理,得到了正解存在的结果.其中允许h(t)在t=0和t=1处奇异.展开更多
文摘讨论了一类如下的三阶常微分方程m点边值问题{u'''(t)+h(t)f(u)=0,u(0)=u'(0)=0,u(1)=sum from i=1 to(m-2)βiu(ηi)正解的存在性.其中η_i∈(0,1),0<η_1<η_2<…<η_(m-2)<1,β_i∈[0,∞)且sum from i=1 to(m-2)βiηi2<1.通过与一个线性算子相关的第一特征值的讨论,运用不动点指数定理,得到了正解存在的结果.其中允许h(t)在t=0和t=1处奇异.