Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadlSSTI and HadSST3). Similar to the Atlantic, SST in the China Seas ...Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadlSSTI and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed during the past 107 years. A comparison between the reconstructed (HadISSTI) and un-interpolated (HadSST3) datasets shows that the SST wanning trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100year)-I in the East China Sea and the Taiwan Strait during winter based on HadISSTI. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadlSSTI is stronger than that fi'om HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100year)-I when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warnling trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃( 100 year)-1 than HadISST 1 's trend of larger than 2.7℃ ( 100 year)-1 at the mouth of the Yangtze River. The restllts also indicate large uncertainties in the estimate of SST warming patterns.展开更多
The inner shelf mud wedge of the East China Sea(ECS) is a high-sedimentation-rate fine-grained sediment unit that has preserved a continuous environmental evolution history since the last deglaciation. We present a hi...The inner shelf mud wedge of the East China Sea(ECS) is a high-sedimentation-rate fine-grained sediment unit that has preserved a continuous environmental evolution history since the last deglaciation. We present a high-resolution clay mineralogical study from Core MD06-3040 to semi-quantitatively evaluate terrigenous sediment contributions from various potential provenances throughout the Holocene. The results showed that the clay mineral assemblage is composed of dominant illite(34–49%), moderate smectite(16–41%) and chlorite(15–28%), and minor kaolinite(5–12%). Provenance analysis suggested that most fine-grained terrigenous sediments originated from the Yangtze River, with minor sediments derived from Taiwan island and negligible sediments from nearby Zhejiang and Fujian provinces. Time series variation in the contribution of the Yangtze source fluctuated in the range of 38–80%, whereas that of Taiwan island had a converse variation pattern from ~10%to ~55%, and the contribution of Fujian was relatively stable in the range of 7–11% throughout the Holocene. The fluctuations of clay mineral assemblages and variations of clay mineral contributions from different provenances of Core MD06-3040 were controlled by the variability of precipitation in the Yangtze drainage associated with periodic fluctuations in the East Asian monsoonal circulation.展开更多
基金supported by the National Basic Research Program of China(2012-CB955602)National Key Program for Developing Basic Science(2010CB428904)Natural Science Foundation of China(40830106,40921004 and 41176006)
文摘Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadlSSTI and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed during the past 107 years. A comparison between the reconstructed (HadISSTI) and un-interpolated (HadSST3) datasets shows that the SST wanning trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100year)-I in the East China Sea and the Taiwan Strait during winter based on HadISSTI. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadlSSTI is stronger than that fi'om HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100year)-I when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warnling trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃( 100 year)-1 than HadISST 1 's trend of larger than 2.7℃ ( 100 year)-1 at the mouth of the Yangtze River. The restllts also indicate large uncertainties in the estimate of SST warming patterns.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91528304, 41530964 & 41676028)
文摘The inner shelf mud wedge of the East China Sea(ECS) is a high-sedimentation-rate fine-grained sediment unit that has preserved a continuous environmental evolution history since the last deglaciation. We present a high-resolution clay mineralogical study from Core MD06-3040 to semi-quantitatively evaluate terrigenous sediment contributions from various potential provenances throughout the Holocene. The results showed that the clay mineral assemblage is composed of dominant illite(34–49%), moderate smectite(16–41%) and chlorite(15–28%), and minor kaolinite(5–12%). Provenance analysis suggested that most fine-grained terrigenous sediments originated from the Yangtze River, with minor sediments derived from Taiwan island and negligible sediments from nearby Zhejiang and Fujian provinces. Time series variation in the contribution of the Yangtze source fluctuated in the range of 38–80%, whereas that of Taiwan island had a converse variation pattern from ~10%to ~55%, and the contribution of Fujian was relatively stable in the range of 7–11% throughout the Holocene. The fluctuations of clay mineral assemblages and variations of clay mineral contributions from different provenances of Core MD06-3040 were controlled by the variability of precipitation in the Yangtze drainage associated with periodic fluctuations in the East Asian monsoonal circulation.