In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
One new species Bryophaenocladius alpinus Deng&Zhang sp.nov.is described and illustrated based on adult males collected from China.The adult males can be distinguished by the third palpomere with a digitiform proj...One new species Bryophaenocladius alpinus Deng&Zhang sp.nov.is described and illustrated based on adult males collected from China.The adult males can be distinguished by the third palpomere with a digitiform projection but without sensilla clavata,anal point broad triangular,inferior volsella sub-rectangular-shaped and covered with setae,gonostylus broad triangular,and crista dorsalis welldeveloped.展开更多
The floating photovoltaic membrane prototype developed by Ocean Sun was selected as a reference object,and a 1∶40 scale laboratory model was designed and produced to further explore the impact of inflow conditions on...The floating photovoltaic membrane prototype developed by Ocean Sun was selected as a reference object,and a 1∶40 scale laboratory model was designed and produced to further explore the impact of inflow conditions on the hydrodynamic properties of the membrane structure.By conducting free attenuation tests,results showed that the inflow has only a slight effect on the natural frequencies of the heave,pitch,and surge of the membrane structure.This finding shows that the dynamic properties of the membrane structure remain essentially stable under different inflow conditions.The results of further regular and irregular wave hydrodynamic experiments show that,compared with the control group,the response of the membrane structure under inflow conditions in terms of heave,pitch,surge,and heave acceleration motions is relatively gentle,whereas the response of the membrane structure to the mooring force is strong.Especially when the waves are irregular,the inflow conditions have a more significant impact on the membrane structure,which may lead to more complex response changes in the structure.Therefore,in the actual engineering design process,the impact of inflow conditions on the behavior of the membrane structure must be fully considered,and appropriate engineering measures must be taken to ensure the safety and stability of the structure.展开更多
Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact ...Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.展开更多
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
基金the financial support from Science and Technology Commission of Shanghai Municipality(1905050190019DZ1204504)。
文摘One new species Bryophaenocladius alpinus Deng&Zhang sp.nov.is described and illustrated based on adult males collected from China.The adult males can be distinguished by the third palpomere with a digitiform projection but without sensilla clavata,anal point broad triangular,inferior volsella sub-rectangular-shaped and covered with setae,gonostylus broad triangular,and crista dorsalis welldeveloped.
基金The National Natural Science Foundation of China(No.52171274).
文摘The floating photovoltaic membrane prototype developed by Ocean Sun was selected as a reference object,and a 1∶40 scale laboratory model was designed and produced to further explore the impact of inflow conditions on the hydrodynamic properties of the membrane structure.By conducting free attenuation tests,results showed that the inflow has only a slight effect on the natural frequencies of the heave,pitch,and surge of the membrane structure.This finding shows that the dynamic properties of the membrane structure remain essentially stable under different inflow conditions.The results of further regular and irregular wave hydrodynamic experiments show that,compared with the control group,the response of the membrane structure under inflow conditions in terms of heave,pitch,surge,and heave acceleration motions is relatively gentle,whereas the response of the membrane structure to the mooring force is strong.Especially when the waves are irregular,the inflow conditions have a more significant impact on the membrane structure,which may lead to more complex response changes in the structure.Therefore,in the actual engineering design process,the impact of inflow conditions on the behavior of the membrane structure must be fully considered,and appropriate engineering measures must be taken to ensure the safety and stability of the structure.
文摘Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.