Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance ...Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.展开更多
基金supported by the National Natural Science Foundation of China(22372044,22393892,22002169,22071249)the Guangdong Basic and Applied Basic Research Foundation(2024A1515012583,2019A1515111111)the Major Program of Guangzhou National Laboratory(GZNL2023A02012)。
文摘Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.