The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are...The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass signiifcantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyl , and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photo-chemistry efifciency (ФPSI ) and the maximum PSII photochemistry efifciency (Fv/Fm), which largely improved light partition-ing and chlorophyl lfuorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamel ae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which wil greatly help to improve photosynthetic capacity and energy efifciency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capac-ity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.展开更多
Despite the great success achieved by the exploitation of heterosis in rice,the genetic basis of heterosis is still not well understood.We adopted an advanced-backcross breeding strategy to dissect the genetic basis o...Despite the great success achieved by the exploitation of heterosis in rice,the genetic basis of heterosis is still not well understood.We adopted an advanced-backcross breeding strategy to dissect the genetic basis of heterosis for yield and eight related traits.Four testcross(TC) populations with 228 testcross F1 combinations were developed by crossing57 introgression lines with four types of widely used male sterile lines using a North Carolina II mating design.Analysis of variance indicated that the effects of testcross F1 combinations and their parents were significant or highly significant for most of the traits in both years,and all interaction effects with year were significant for most of the traits.Positive midparent heterosis(HMP) was observed for most traits in the four TC populations in the two years.The relative HMPlevels for most traits varied from highly negative to highly positive.Sixty-two dominant-effect QTL were identified for HMPof the nine traits in the four TC populations in the two years.Of these,22 QTL were also identified for the performance of testcross F1.Most dominant-effect QTL could individually explain more than 10% of the phenotypic variation.Four QTL clusters were observed including the region surrounding the RM9–RM297 region on chromosome 1,the RM110–RM279–RM8–RM5699–RM452 region on chromosome 2,the RM5463 locus on chromosome 6 and the RM1146–RM147 region on chromosome 10.The identified QTL for heterosis provide valuable information for dissecting the genetic basis of heterosis.展开更多
Three residual heterozygous lines (RHLs) carrying heterozygous segments in the intervals RM587–RM225, RM204–RM6119 and RM6119–RM402 on the short arm of rice chromosome 6, respectively, were selected from a rice pop...Three residual heterozygous lines (RHLs) carrying heterozygous segments in the intervals RM587–RM225, RM204–RM6119 and RM6119–RM402 on the short arm of rice chromosome 6, respectively, were selected from a rice population derived from an RHL for the interval RM587–RM402. Ten maternal homozygotes, 10 paternal homozygotes and 20 heterozygotes were selected from each of the F2 populations derived from the three RHLs. The three sets of near isogenic lines (NILs) were grown to detect the grain yield per plant, number of panicles per plant, number of filled grains per panicle and 1000-grain weight. With analysis on the phenotypic differences among the three genotype groups in each NIL set and those among overlapping chromosome segment substitution lines, three QTLs for number of filled grains per panicle and two QTLs for grain yield per plant were resolved. They were located in the intervals ranging from 0.66 Mb to 2.49 Mb. The additive effect was higher than the dominance effect at each locus. The allele for increasing the trait value was derived from the paternal parent at qNFGP6-1, and from the maternal alleles at other QTLs. Based on the present study, an approach for constructing new genetic resource to facilitate fine mapping of QTLs in rice was proposed.展开更多
Introgression lines(ILs)derived from interspecific crosses are a source of new genetic variability.A total of 55 ILs derived from two crosses Swarna×O.nivara IRGC81848(population A)and Swarna×O.nivara IRGC81...Introgression lines(ILs)derived from interspecific crosses are a source of new genetic variability.A total of 55 ILs derived from two crosses Swarna×O.nivara IRGC81848(population A)and Swarna×O.nivara IRGC81832(population B)were characterized for yield and yield-related traits/QTLs.Segregation of 103 simple sequence repeat(SSR)markers associated with yield-related QTLs was studied.Population A showed an average of 12.6%homozygous O.nivara alleles and population B showed 10.6%.Interestingly,three SSR markers,RM223,RM128 and RM517,showed conspicuous pattern of segregation.The distribution of parental alleles at three loci RM223,RM128 and RM517 linked to yield-related traits was unique.These markers flanked to several yield-related QTLs.RM223,flanking to qyld8.3,was heterozygous in almost all the 55 ILs except in IL10-3S and IL131S.RM128 on chromosome 1 and RM517 on chromosome 3 were mutually exclusive in 46 out of 55 ILs.These 46 ILs showed either of the marker allele RM128 or RM517 from O.nivara but not both.IL166S had both RM128and RM517 from O.nivara and the other ILs showed homozygous Swarna allele at RM517 except IL65S.Population structure assigned the 55 ILs to three sub-populations based on their genomic diversity.IL65S,IL166S,IL248S,IL7K and IL250K showed high yields in multi-location trials,and IL248S was released for cultivation as DRRDhan 40.展开更多
[ Objectives ] The aim was to optimize the configuration of seedling density and line spacing of forage sweet sorghum ( Sorghum blcolor ( L. ) Moench) and explore its high-yield cultivation techniques. [ Methods] ...[ Objectives ] The aim was to optimize the configuration of seedling density and line spacing of forage sweet sorghum ( Sorghum blcolor ( L. ) Moench) and explore its high-yield cultivation techniques. [ Methods] Effects of such two influencing factors as line spacing and seedling density on the leaf-stem ratio, DW/FW ratio and grass yield of forage sweet sorghum were analyzed by using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statis- tics. v22 stati, stics software. [ Results ~ Seedling density and line spacing had no obvious effect on the leaf-stem ratio and DW/FW ratio of forage sweet sorghum but had obvious influences on the grass yield. Moreover, the optimal combination of seedling density and line spacing for high yield of forage sweet sorghum was A2 B4, that is, seedling density was 225 000 plants/hm2, and line spacing was 40 cm. [ Conclusions] The results provided a theoretical basis and technical support for high-yield cultivation techniques of forage sweet sorghum.展开更多
Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are ca...Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.展开更多
In order to define the relationship between yield and important agronomic traits of two lines hybrid Uangyou 2111, the principal component analysis method was used to analyze the expadmental data of six test points in...In order to define the relationship between yield and important agronomic traits of two lines hybrid Uangyou 2111, the principal component analysis method was used to analyze the expadmental data of six test points in Yunnan Province. The results showed that the main factors influencing the production of Liangyou 2111 were grain number, grains seed number, panicle length, growth padod and panicle rate; then were 1 O00-grain weight, seed setting rate, effective panicle and highest stem tillers number; again was plant height. Therefore, when hybrid rice of Uangyou 2111 will be planted widely in yunnan province, we should focus on en- sudng the panicle traits, especially increase grain number and grain seed number, and coordinately develop other traits to achieve high yield.展开更多
Circumferential yielding lining is able to tolerate controlled displacements without failure,which has been proven to be an effective solution to large deformation problem in squeezing tunnels.However,up to now,there ...Circumferential yielding lining is able to tolerate controlled displacements without failure,which has been proven to be an effective solution to large deformation problem in squeezing tunnels.However,up to now,there has not been a well-established design method for it.This paper aims to present a detailed analytical computation of support characteristic curve(SCC)for circumferential yielding lining,which is a significant aspect of the implementation of convergence-confinement method(CCM)in tunnel support design.Circumferential yielding lining consists of segmental shotcrete linings and highly deformable elements,and its superior performance mainly depends on the mechanical characteristic of highly deformable element.The deformation behavior of highly deformable element is firstly investigated.Its whole deforming process can be divided into three stages including elastic,yielding and compaction stages.Especially in the compaction stage of highly deformable element,a nonlinear stress-strain relationship can be observed.For mathematical convenience,the stress-strain curve in this period is processed as several linear sub-curves.Then,the reasons for closure of circumferential yielding lining in different stages are explained,and the corresponding accurate equations required for constructing the SCC are provided.Furthermore,this paper carries out two case studies illustrating the application of all equations needed to construct the SCC for circumferential yielding lining,where the reliability and feasibility of theoretical derivation are also well verified.Finally,this paper discusses the sensitivity of sub-division in element compaction stage and the influence of element length on SCC.The outcome of this paper could be used in the design of proper circumferential yielding lining.展开更多
To dissect the genetic basis of low phosphorus tolerance (LPT), 114 BC2F4 introgression lines (ILs) were developed from Shuhui 527 and Minghui 86 (recurrent parents), and Yetuozai (donor parent). The progenies...To dissect the genetic basis of low phosphorus tolerance (LPT), 114 BC2F4 introgression lines (ILs) were developed from Shuhui 527 and Minghui 86 (recurrent parents), and Yetuozai (donor parent). The progenies were tested for 11 quantitative traits under three treatments including normal fertilization in normal soil (as control), normal fertilization in barren soil and low phosphorus stress in barren soil in Langfang, Hebei Province, China. Moreover, the ILs were investigated at the seedling stage using nutrient solution culture method in greenhouse in Beijing, China. A total of 49 main-effect quantitative trait loci (QTLs) underlying yield related traits were identified in Langfang, and their contributions to phenotypic variations ranged from 6.7% to 16.5%. Among them, 25 (51.0%) QTLs had favorable alleles from donor parent. A total of 48 main-effect QTLs were identified for LPT-related traits in Beijing, and their contributions to phenotypic variations ranged from 7.7% to 16.6%. Among them, 21 (43.8%) QTLs had favorable alleles from donor parent. About 79.6% of the QTLs can be detected repeatedly under two or more treatments, especially QTLs associated with spikelet number per panicle, spikelet fertility and 1000-grain weight, displaying consistent phenotypic effects. Among all the detected QTLs, eight QTLs were simultaneously identified under low phosphorus stress across two environments. These results can provide useful information for the genetic dissection of LPT in rice.展开更多
Mango is an important cash crop in the tropics and subtropics. Determining the yield gap of mango and production constraints can potentially promote the sustainable development of the mango industry. In this study, bo...Mango is an important cash crop in the tropics and subtropics. Determining the yield gap of mango and production constraints can potentially promote the sustainable development of the mango industry. In this study, boundary line analysis based on survey data from 103 smallholder farmers and a yield gap model were used to determine the yield gap and production constraints in mango plantations in the northern mountain, central valley and southern mountains regions of Tianyang County, Guangxi, China. The results indicated that the yield of mango in three representing regions of Tianyang County,Northern Mountains, Central Valley and Southern Mountains, was 18.3, 17.0 and 15.4 t ha^–1 yr^–1, with an explainable yield gap of 10.9, 6.1 and 14.8 t ha^–1 yr^–1, respectively. Fertilization management, including fertilizer N, P2O5 and K2O application rates, and planting density were the main limiting factors of mango yield in all three regions. In addition, tree age influenced mango yield in the Northern Mountains(11.1%) and Central Valley(11.7%) regions. Irrigation time influenced mango yield in the Northern Mountains(9.9%) and Southern Mountains(12.2%). Based on a scenario analysis, the predicted yield would increase by up to 50%, and fertilizer N use would be reduced by as much as approximately 20%. An improved understanding of production constraints will aid in the development of management strategy measures to increase mango yield.展开更多
An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat(SSR) marker-assisted selection(MAS). Z550 carr...An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat(SSR) marker-assisted selection(MAS). Z550 carries 13 substitution segments distributed on chromosomes 1, 6, 7, 8, 9, 10, and 12, with an average substitution length of 1.68 Mb. Compared with the Nipponbare parental line, plant height, panicle length, spikelets per panicle, grains per panicle, and grain weight for Z550 were significantly increased. While the grain width of Z550 was significantly narrower, and the seed setting ratio(81.43%) was significantly lower than that of Nipponbare, it is still sufficient for breeding purposes. Quantitative trait loci(QTLs) mapping for important agronomic traits was conducted with the F_2 population derived from Nipponbare crossed with Z550 using the restricted maximum likelihood(REML) method. A total of 16, including 12 previously unreported QTLs were detected, with contribution rates ranging from 1.46 to 10.49%. Grains per panicle was controlled by 8 QTLs, 5 of which increased number of grains whereas 3 decreased it. qGPP-1, with the largest contribution(10.49%), was estimated to increase grains per panicle by 30.67, while q GPP-9, with the minimum contribution rate(2.47%), had an effect of increasing grains per panicle by 15.79. These results will be useful for further development of single segment substitution lines with major QTLs, and for research of their molecular functions via QTL cloning.展开更多
To understand the wild Oryza genome effect on photosynthesis and its relation to total dry matter accumulation in an elite rice variety, a set of 40 stable introgression lines(ILs) BC_3F_8 derived from a cross of Oryz...To understand the wild Oryza genome effect on photosynthesis and its relation to total dry matter accumulation in an elite rice variety, a set of 40 stable introgression lines(ILs) BC_3F_8 derived from a cross of Oryza sativa(KMR3) × Oryza rufipogon(WR120) were grown under well watered conditions. Leaf gas exchange measurements and leaf chlorophyll estimates were conducted at the flowering stage. The results revealed significant variations in net photosynthetic rate(Pn), transpiration rate(E), transpiration efficiency(Pn/E) and carboxylation efficiency(Pn/C_i). Pn showed significant positive correlation with E, stomatal conductance(g_s), Pn/C_i and total canopy dry matter. Specific leaf area and leaf thickness were not significantly correlated with Pn. Thirty-seven out of 40 ILs showed higher Pn than KMR3 [11.28 μmol/(m^2·s)], and 20 ILs showed higher Pn than WR120 [15.08 μmol/(m^2·s)]. The line IL194 showed the highest Pn [21.62 μmol/(m^2·s)] with increased total canopy dry matter followed by lines IL381, IL106, IL363-12, IL198, IL86-18 and IL50, which exhibited Pn above 18.0 μmol/(m^2·s). The ILs with enhanced Pn are a potential source for developing rice varieties and hybrids with higher biomass and yield.展开更多
Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigate...Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.展开更多
Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an anal...Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.展开更多
This study was undertaken to dissect quantitative trait loci (QTLs) controlling yield traits on the short arm of rice chromosome 6. A residual heterozygous line that carries a heterozygous segment extending from RM5...This study was undertaken to dissect quantitative trait loci (QTLs) controlling yield traits on the short arm of rice chromosome 6. A residual heterozygous line that carries a heterozygous segment extending from RM587 to RM19784 on the short arm of rice chromosome 6 was selected from an F7 population of the indica rice cross Zhenshan 97B/Milyang 46. An F2:3 population consisting of 221 lines was derived and grown in two trial sites. Six yield traits including number of panicles per plant, number of filled grains per panicle, total number of spikelets per panicle, spikelet fertility, 1 000-grain weight, and grain yield per plant were measured. An SSR marker linkage map was constructed and employed to determine QTLs for yield traits with Windows QTL Cartographer 2.5. QTLs were detected in the target interval for all the traits analyzed except NP, with phenotypic variance explained by a single QTL ranging between 6.3% and 35.2%. Most of the QTLs for yield components acted as additive QTLs, while the three QTLs for grain yield had dominance degrees of 1.65, 0.84, and -0.42, respectively. It was indicated that three or more QTLs for yield traits were located in the target region. The genetic action mode, the direction of the QTL effect, and the magnitude of the QTL effect varied among different QTLs for a given trait, and among QTLs for different traits that were located in the same interval.展开更多
North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield po...North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield potential and limiting factors driving the current yield gap remain unclear. Therefore, increasing the wheat yield in NCP is essential for the national food security. This study monitored wheat yield, management practices and soil nutrient data in 132 farmers’ fields of Xushui County, Baoding City, Hebei Province during 2014–2016. These data were analyzed using variance and path analysis to determine the yield gap and the contribution of yield components(i.e., spikes per hectare, grain number per spike and 1 000-grain weight) to wheat yield. Then, the limiting factors of yield components and the optimizing strategies were identified by a boundary line approach. The results showed that the attainable potential yield for winter wheat was 10 514 kg ha^–1. The yield gaps varied strongly between three yield groups(i.e., high, middle and low), which were divided by yield level and contained 44 farmers in each group, and amounted to 2 493, 1 636 and 814 kg ha^–1, respectively. For the three yield components, only spikes per hectare was significantly different(P<0.01) among the three yield groups. For all 132 farmers’ fields, correlation between yield and spikes per hectare(r=0.51, P<0.01), was significantly positive, while correlations with grain number per spike(r=–0.16) and 1 000-grain weight(r=–0.10) were not significant. The path analysis also showed that the spikes per hectare of winter wheat were the most important component to the wheat yield. Boundary line analysis showed that seeding date was the most limiting factor of spikes per hectare with the highest contribution rate(26.7%), followed by basal N input(22.1%) and seeding rate(14.5%), which indicated that management factors in the seeding step were the most important for affecting spikes per hectare. For desired spikes per hectare(>6.598×10^6 ha^–1),the seeding rate should range from 210–300 kg ha^–1, seeding date should range from 3th to 8th October, and basal N input should range from 90–180 kg ha^–1. Compared to these reasonable ranges of management measures, most of the farmers’ practices were not suitable, and both lower and higher levels of management existed. It is concluded that the strategies for optimizing yield components could be achieved by improving wheat seeding quality and optimizing farmers’ nutrient management practices in the NCP.展开更多
基金financial support from the National Natural Science Foundation of China (31401342)the National Basic Research Program of China (973 Program, 2015CB150401)
文摘The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass signiifcantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyl , and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photo-chemistry efifciency (ФPSI ) and the maximum PSII photochemistry efifciency (Fv/Fm), which largely improved light partition-ing and chlorophyl lfuorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamel ae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which wil greatly help to improve photosynthetic capacity and energy efifciency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capac-ity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.
基金funded by the National High Technology Research and Development Program of China (No.2014AA10A604)the Shenzhen Municipal Peacock Plan for introducing high-level overseas talents
文摘Despite the great success achieved by the exploitation of heterosis in rice,the genetic basis of heterosis is still not well understood.We adopted an advanced-backcross breeding strategy to dissect the genetic basis of heterosis for yield and eight related traits.Four testcross(TC) populations with 228 testcross F1 combinations were developed by crossing57 introgression lines with four types of widely used male sterile lines using a North Carolina II mating design.Analysis of variance indicated that the effects of testcross F1 combinations and their parents were significant or highly significant for most of the traits in both years,and all interaction effects with year were significant for most of the traits.Positive midparent heterosis(HMP) was observed for most traits in the four TC populations in the two years.The relative HMPlevels for most traits varied from highly negative to highly positive.Sixty-two dominant-effect QTL were identified for HMPof the nine traits in the four TC populations in the two years.Of these,22 QTL were also identified for the performance of testcross F1.Most dominant-effect QTL could individually explain more than 10% of the phenotypic variation.Four QTL clusters were observed including the region surrounding the RM9–RM297 region on chromosome 1,the RM110–RM279–RM8–RM5699–RM452 region on chromosome 2,the RM5463 locus on chromosome 6 and the RM1146–RM147 region on chromosome 10.The identified QTL for heterosis provide valuable information for dissecting the genetic basis of heterosis.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006AA10Z1E8)the Super Rice Program of Ministry of Agriculture, China (Grant No. 200606)the Natural Science Foundation of Zhejiang Province, China (Grant No. Y304446).
文摘Three residual heterozygous lines (RHLs) carrying heterozygous segments in the intervals RM587–RM225, RM204–RM6119 and RM6119–RM402 on the short arm of rice chromosome 6, respectively, were selected from a rice population derived from an RHL for the interval RM587–RM402. Ten maternal homozygotes, 10 paternal homozygotes and 20 heterozygotes were selected from each of the F2 populations derived from the three RHLs. The three sets of near isogenic lines (NILs) were grown to detect the grain yield per plant, number of panicles per plant, number of filled grains per panicle and 1000-grain weight. With analysis on the phenotypic differences among the three genotype groups in each NIL set and those among overlapping chromosome segment substitution lines, three QTLs for number of filled grains per panicle and two QTLs for grain yield per plant were resolved. They were located in the intervals ranging from 0.66 Mb to 2.49 Mb. The additive effect was higher than the dominance effect at each locus. The allele for increasing the trait value was derived from the paternal parent at qNFGP6-1, and from the maternal alleles at other QTLs. Based on the present study, an approach for constructing new genetic resource to facilitate fine mapping of QTLs in rice was proposed.
基金financially supported by a grant from Department of Biotechnology,Government of India[DBT No.BT/AB/FG-2(PH-II)2009]
文摘Introgression lines(ILs)derived from interspecific crosses are a source of new genetic variability.A total of 55 ILs derived from two crosses Swarna×O.nivara IRGC81848(population A)and Swarna×O.nivara IRGC81832(population B)were characterized for yield and yield-related traits/QTLs.Segregation of 103 simple sequence repeat(SSR)markers associated with yield-related QTLs was studied.Population A showed an average of 12.6%homozygous O.nivara alleles and population B showed 10.6%.Interestingly,three SSR markers,RM223,RM128 and RM517,showed conspicuous pattern of segregation.The distribution of parental alleles at three loci RM223,RM128 and RM517 linked to yield-related traits was unique.These markers flanked to several yield-related QTLs.RM223,flanking to qyld8.3,was heterozygous in almost all the 55 ILs except in IL10-3S and IL131S.RM128 on chromosome 1 and RM517 on chromosome 3 were mutually exclusive in 46 out of 55 ILs.These 46 ILs showed either of the marker allele RM128 or RM517 from O.nivara but not both.IL166S had both RM128and RM517 from O.nivara and the other ILs showed homozygous Swarna allele at RM517 except IL65S.Population structure assigned the 55 ILs to three sub-populations based on their genomic diversity.IL65S,IL166S,IL248S,IL7K and IL250K showed high yields in multi-location trials,and IL248S was released for cultivation as DRRDhan 40.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(20120304201)
文摘[ Objectives ] The aim was to optimize the configuration of seedling density and line spacing of forage sweet sorghum ( Sorghum blcolor ( L. ) Moench) and explore its high-yield cultivation techniques. [ Methods] Effects of such two influencing factors as line spacing and seedling density on the leaf-stem ratio, DW/FW ratio and grass yield of forage sweet sorghum were analyzed by using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statis- tics. v22 stati, stics software. [ Results ~ Seedling density and line spacing had no obvious effect on the leaf-stem ratio and DW/FW ratio of forage sweet sorghum but had obvious influences on the grass yield. Moreover, the optimal combination of seedling density and line spacing for high yield of forage sweet sorghum was A2 B4, that is, seedling density was 225 000 plants/hm2, and line spacing was 40 cm. [ Conclusions] The results provided a theoretical basis and technical support for high-yield cultivation techniques of forage sweet sorghum.
基金The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China(Grant Nos.51504257 and 51674266)the State Key Research Development Program of China(Grant No.2016YFC0600704)+1 种基金the Fund of Yue Qi Outstanding Scholars(Grant No.2018A16)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control at Chongqing University(Grant No.2011DA105287-FW201604).
文摘Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.
基金Supported by Yunnan Agricultural Development BureauYunnan Modern Agricultural Rice Industry Technology System~~
文摘In order to define the relationship between yield and important agronomic traits of two lines hybrid Uangyou 2111, the principal component analysis method was used to analyze the expadmental data of six test points in Yunnan Province. The results showed that the main factors influencing the production of Liangyou 2111 were grain number, grains seed number, panicle length, growth padod and panicle rate; then were 1 O00-grain weight, seed setting rate, effective panicle and highest stem tillers number; again was plant height. Therefore, when hybrid rice of Uangyou 2111 will be planted widely in yunnan province, we should focus on en- sudng the panicle traits, especially increase grain number and grain seed number, and coordinately develop other traits to achieve high yield.
基金supported by National Natural Science Foundation of China(Grant Nos.11872287 and 51908431)Fund of Shaanxi Key Research and Development Program(Grant No.2019ZDLGY01-10)。
文摘Circumferential yielding lining is able to tolerate controlled displacements without failure,which has been proven to be an effective solution to large deformation problem in squeezing tunnels.However,up to now,there has not been a well-established design method for it.This paper aims to present a detailed analytical computation of support characteristic curve(SCC)for circumferential yielding lining,which is a significant aspect of the implementation of convergence-confinement method(CCM)in tunnel support design.Circumferential yielding lining consists of segmental shotcrete linings and highly deformable elements,and its superior performance mainly depends on the mechanical characteristic of highly deformable element.The deformation behavior of highly deformable element is firstly investigated.Its whole deforming process can be divided into three stages including elastic,yielding and compaction stages.Especially in the compaction stage of highly deformable element,a nonlinear stress-strain relationship can be observed.For mathematical convenience,the stress-strain curve in this period is processed as several linear sub-curves.Then,the reasons for closure of circumferential yielding lining in different stages are explained,and the corresponding accurate equations required for constructing the SCC are provided.Furthermore,this paper carries out two case studies illustrating the application of all equations needed to construct the SCC for circumferential yielding lining,where the reliability and feasibility of theoretical derivation are also well verified.Finally,this paper discusses the sensitivity of sub-division in element compaction stage and the influence of element length on SCC.The outcome of this paper could be used in the design of proper circumferential yielding lining.
基金funded by the National High-Technology Research and Development Program of China (Grant No.2014AA10A604)Shenzhen Peacock Plan in China
文摘To dissect the genetic basis of low phosphorus tolerance (LPT), 114 BC2F4 introgression lines (ILs) were developed from Shuhui 527 and Minghui 86 (recurrent parents), and Yetuozai (donor parent). The progenies were tested for 11 quantitative traits under three treatments including normal fertilization in normal soil (as control), normal fertilization in barren soil and low phosphorus stress in barren soil in Langfang, Hebei Province, China. Moreover, the ILs were investigated at the seedling stage using nutrient solution culture method in greenhouse in Beijing, China. A total of 49 main-effect quantitative trait loci (QTLs) underlying yield related traits were identified in Langfang, and their contributions to phenotypic variations ranged from 6.7% to 16.5%. Among them, 25 (51.0%) QTLs had favorable alleles from donor parent. A total of 48 main-effect QTLs were identified for LPT-related traits in Beijing, and their contributions to phenotypic variations ranged from 7.7% to 16.6%. Among them, 21 (43.8%) QTLs had favorable alleles from donor parent. About 79.6% of the QTLs can be detected repeatedly under two or more treatments, especially QTLs associated with spikelet number per panicle, spikelet fertility and 1000-grain weight, displaying consistent phenotypic effects. Among all the detected QTLs, eight QTLs were simultaneously identified under low phosphorus stress across two environments. These results can provide useful information for the genetic dissection of LPT in rice.
基金funded by the National Key Research and Development Program of China (2016YFE0101100 and 2016YFD0201137)the Innovative Group Grant of the National Science Foundation of China (31421092)
文摘Mango is an important cash crop in the tropics and subtropics. Determining the yield gap of mango and production constraints can potentially promote the sustainable development of the mango industry. In this study, boundary line analysis based on survey data from 103 smallholder farmers and a yield gap model were used to determine the yield gap and production constraints in mango plantations in the northern mountain, central valley and southern mountains regions of Tianyang County, Guangxi, China. The results indicated that the yield of mango in three representing regions of Tianyang County,Northern Mountains, Central Valley and Southern Mountains, was 18.3, 17.0 and 15.4 t ha^–1 yr^–1, with an explainable yield gap of 10.9, 6.1 and 14.8 t ha^–1 yr^–1, respectively. Fertilization management, including fertilizer N, P2O5 and K2O application rates, and planting density were the main limiting factors of mango yield in all three regions. In addition, tree age influenced mango yield in the Northern Mountains(11.1%) and Central Valley(11.7%) regions. Irrigation time influenced mango yield in the Northern Mountains(9.9%) and Southern Mountains(12.2%). Based on a scenario analysis, the predicted yield would increase by up to 50%, and fertilizer N use would be reduced by as much as approximately 20%. An improved understanding of production constraints will aid in the development of management strategy measures to increase mango yield.
基金supported by the National Key R&D Program of China (2017YFD0100202)the Chongqing Science and Technology Commission Special Project, China (cstc2016shms-ztzx0017)the Southwestern University Basic Operating Expenses Special Innovation Team Project, China (XDJK2017A004)
文摘An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat(SSR) marker-assisted selection(MAS). Z550 carries 13 substitution segments distributed on chromosomes 1, 6, 7, 8, 9, 10, and 12, with an average substitution length of 1.68 Mb. Compared with the Nipponbare parental line, plant height, panicle length, spikelets per panicle, grains per panicle, and grain weight for Z550 were significantly increased. While the grain width of Z550 was significantly narrower, and the seed setting ratio(81.43%) was significantly lower than that of Nipponbare, it is still sufficient for breeding purposes. Quantitative trait loci(QTLs) mapping for important agronomic traits was conducted with the F_2 population derived from Nipponbare crossed with Z550 using the restricted maximum likelihood(REML) method. A total of 16, including 12 previously unreported QTLs were detected, with contribution rates ranging from 1.46 to 10.49%. Grains per panicle was controlled by 8 QTLs, 5 of which increased number of grains whereas 3 decreased it. qGPP-1, with the largest contribution(10.49%), was estimated to increase grains per panicle by 30.67, while q GPP-9, with the minimum contribution rate(2.47%), had an effect of increasing grains per panicle by 15.79. These results will be useful for further development of single segment substitution lines with major QTLs, and for research of their molecular functions via QTL cloning.
基金supported by a grant from the Department of Biotechnology,Government of India,DBT(No.BT/AB/FG-2(PHII)IA/2009)
文摘To understand the wild Oryza genome effect on photosynthesis and its relation to total dry matter accumulation in an elite rice variety, a set of 40 stable introgression lines(ILs) BC_3F_8 derived from a cross of Oryza sativa(KMR3) × Oryza rufipogon(WR120) were grown under well watered conditions. Leaf gas exchange measurements and leaf chlorophyll estimates were conducted at the flowering stage. The results revealed significant variations in net photosynthetic rate(Pn), transpiration rate(E), transpiration efficiency(Pn/E) and carboxylation efficiency(Pn/C_i). Pn showed significant positive correlation with E, stomatal conductance(g_s), Pn/C_i and total canopy dry matter. Specific leaf area and leaf thickness were not significantly correlated with Pn. Thirty-seven out of 40 ILs showed higher Pn than KMR3 [11.28 μmol/(m^2·s)], and 20 ILs showed higher Pn than WR120 [15.08 μmol/(m^2·s)]. The line IL194 showed the highest Pn [21.62 μmol/(m^2·s)] with increased total canopy dry matter followed by lines IL381, IL106, IL363-12, IL198, IL86-18 and IL50, which exhibited Pn above 18.0 μmol/(m^2·s). The ILs with enhanced Pn are a potential source for developing rice varieties and hybrids with higher biomass and yield.
基金financial support from the National Natural Science Foundation of China (Nos. 51004084, 51274170)the Doctoral Fund of Ministry of Education of China (No. 20105121120002)
文摘Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.
基金ItemSponsored by National Natural Science Foundation of China (50474015)
文摘Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.
基金supported by the Zhejiang Natural Science Foundation(Y304446)the National 863 Program of China(2006AA10Z1E8)the Chinese Super Rice Breeding Program(200606).
文摘This study was undertaken to dissect quantitative trait loci (QTLs) controlling yield traits on the short arm of rice chromosome 6. A residual heterozygous line that carries a heterozygous segment extending from RM587 to RM19784 on the short arm of rice chromosome 6 was selected from an F7 population of the indica rice cross Zhenshan 97B/Milyang 46. An F2:3 population consisting of 221 lines was derived and grown in two trial sites. Six yield traits including number of panicles per plant, number of filled grains per panicle, total number of spikelets per panicle, spikelet fertility, 1 000-grain weight, and grain yield per plant were measured. An SSR marker linkage map was constructed and employed to determine QTLs for yield traits with Windows QTL Cartographer 2.5. QTLs were detected in the target interval for all the traits analyzed except NP, with phenotypic variance explained by a single QTL ranging between 6.3% and 35.2%. Most of the QTLs for yield components acted as additive QTLs, while the three QTLs for grain yield had dominance degrees of 1.65, 0.84, and -0.42, respectively. It was indicated that three or more QTLs for yield traits were located in the target region. The genetic action mode, the direction of the QTL effect, and the magnitude of the QTL effect varied among different QTLs for a given trait, and among QTLs for different traits that were located in the same interval.
基金supported by the National Basic Research Program of China (2015CB150405)the Special Fund for Agro-scientific Research in the Public Interest, China (201103003)
文摘North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield potential and limiting factors driving the current yield gap remain unclear. Therefore, increasing the wheat yield in NCP is essential for the national food security. This study monitored wheat yield, management practices and soil nutrient data in 132 farmers’ fields of Xushui County, Baoding City, Hebei Province during 2014–2016. These data were analyzed using variance and path analysis to determine the yield gap and the contribution of yield components(i.e., spikes per hectare, grain number per spike and 1 000-grain weight) to wheat yield. Then, the limiting factors of yield components and the optimizing strategies were identified by a boundary line approach. The results showed that the attainable potential yield for winter wheat was 10 514 kg ha^–1. The yield gaps varied strongly between three yield groups(i.e., high, middle and low), which were divided by yield level and contained 44 farmers in each group, and amounted to 2 493, 1 636 and 814 kg ha^–1, respectively. For the three yield components, only spikes per hectare was significantly different(P<0.01) among the three yield groups. For all 132 farmers’ fields, correlation between yield and spikes per hectare(r=0.51, P<0.01), was significantly positive, while correlations with grain number per spike(r=–0.16) and 1 000-grain weight(r=–0.10) were not significant. The path analysis also showed that the spikes per hectare of winter wheat were the most important component to the wheat yield. Boundary line analysis showed that seeding date was the most limiting factor of spikes per hectare with the highest contribution rate(26.7%), followed by basal N input(22.1%) and seeding rate(14.5%), which indicated that management factors in the seeding step were the most important for affecting spikes per hectare. For desired spikes per hectare(>6.598×10^6 ha^–1),the seeding rate should range from 210–300 kg ha^–1, seeding date should range from 3th to 8th October, and basal N input should range from 90–180 kg ha^–1. Compared to these reasonable ranges of management measures, most of the farmers’ practices were not suitable, and both lower and higher levels of management existed. It is concluded that the strategies for optimizing yield components could be achieved by improving wheat seeding quality and optimizing farmers’ nutrient management practices in the NCP.