A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard...A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.展开更多
We investigate the online scheduling problem on identical parallel-batch machines to minimize the maximum weighted completion time.In this problem,jobs arrive over time and the processing times(of the jobs)are identic...We investigate the online scheduling problem on identical parallel-batch machines to minimize the maximum weighted completion time.In this problem,jobs arrive over time and the processing times(of the jobs)are identical,and the batch capacity is bounded.For this problem,we provide a best possible online algorithm with a competitive ratio of(√5+1)/2.Moreover,when restricted to dense-algorithms,we present a best possible dense-algorithm with a competitive ratio of 2.展开更多
Due to the fourth revolution experiencing,referred to as Industry 4.0,many production firms are devoted to integrating new technological tools to their manufacturing process.One of them,is rescheduling the tasks on th...Due to the fourth revolution experiencing,referred to as Industry 4.0,many production firms are devoted to integrating new technological tools to their manufacturing process.One of them,is rescheduling the tasks on the machines responding to disruptions.While,for static scheduling,the efficiency criteria measure the performance of scheduling systems,in dynamic environments,the stability criteria are also used to assess the impact of jobs deviation.In this paper,a new performance measure is investigated for a flowshop rescheduling problem.This one considers simultaneously the total weighted waiting time as the efficiency criterion,and the total weighted completion time deviation as the stability criterion.This fusion could be a very helpful and significant measure for real life industrial systems.Two disruption types are considered:jobs arrival and jobs cancellation.Thus,a Mixed Integer Linear Programming(MILP)model is developed,as well as an iterative predictive-reactive strategy for dealing with the online part.At last,two heuristic methods are proposed and discussed,in terms of solution quality and computing time.展开更多
基金the National Natural Science Foundation of China (70631003)the Hefei University of Technology Foundation (071102F).
文摘A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.
基金This research was supported by the National Natural Science Foundation of China(Nos.11571321 and 11401065)the Natural Science Foundation of Henan Province(No.15IRTSTHN006).
文摘We investigate the online scheduling problem on identical parallel-batch machines to minimize the maximum weighted completion time.In this problem,jobs arrive over time and the processing times(of the jobs)are identical,and the batch capacity is bounded.For this problem,we provide a best possible online algorithm with a competitive ratio of(√5+1)/2.Moreover,when restricted to dense-algorithms,we present a best possible dense-algorithm with a competitive ratio of 2.
文摘Due to the fourth revolution experiencing,referred to as Industry 4.0,many production firms are devoted to integrating new technological tools to their manufacturing process.One of them,is rescheduling the tasks on the machines responding to disruptions.While,for static scheduling,the efficiency criteria measure the performance of scheduling systems,in dynamic environments,the stability criteria are also used to assess the impact of jobs deviation.In this paper,a new performance measure is investigated for a flowshop rescheduling problem.This one considers simultaneously the total weighted waiting time as the efficiency criterion,and the total weighted completion time deviation as the stability criterion.This fusion could be a very helpful and significant measure for real life industrial systems.Two disruption types are considered:jobs arrival and jobs cancellation.Thus,a Mixed Integer Linear Programming(MILP)model is developed,as well as an iterative predictive-reactive strategy for dealing with the online part.At last,two heuristic methods are proposed and discussed,in terms of solution quality and computing time.