The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending st...The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending stress. Various protective devices are adopted to protect the station in the extreme conditions against excessive power of airflow, excessive torsion of the shaft, over-pressure of the chamber, over-speed of rotation, power failure, and so on. It turns out that the structural design and protective methods for the 100 kW shoreline wave power station are successful.展开更多
An information system for ocean wave resources and its application to wave power utilization are introduced. It can manage, analyze and process the data in the monthly report of ocean wave observation records of the S...An information system for ocean wave resources and its application to wave power utilization are introduced. It can manage, analyze and process the data in the monthly report of ocean wave observation records of the State Ocean Administration, and can provide various kinds of curves and numerical characters of statistics. This system has been put into utility in Guangzhou Institute of Energy Conversion (GIEC), the Chinese Academy of Sciences since 1996. An application example is given of the investigation and analysis on ocean wave resource of the Nan Ao Island, Guangdong Province, where a 100 kW onshore OWC (oscillating water column) wave power station will be built. The wave power distribution is obtained in different wave directions for different wave periods. It is found that 70 percent of the wave power comes from the direction of ENE, and more than 95 percent of the wave power is related with direction E. The average wave power density is about 3 kW/m, and more than 80 percent of the wave power is distributed in the wave periods of 4 second to 5 second. Based on the analysis of wave resources, a site on the east coast of the island and a design width of 20 m for the 100 kW station are suggested.展开更多
波浪对漂浮式潮流能水轮机的水动力性能具有重要的影响,论文采用切片理论建立和三维水轮机无辐射运动时立轴潮流水轮机水动力载荷近似计算公式,计算分析了浪流同向条件下,海能1号2×150 k W漂浮式潮流电站两叶片固定偏角立轴水轮机...波浪对漂浮式潮流能水轮机的水动力性能具有重要的影响,论文采用切片理论建立和三维水轮机无辐射运动时立轴潮流水轮机水动力载荷近似计算公式,计算分析了浪流同向条件下,海能1号2×150 k W漂浮式潮流电站两叶片固定偏角立轴水轮机在波浪中的水动力载荷。计算结果表明,波浪中潮流水轮机水动力具有双频特性;水轮机工作工况下,每增加1 m波高,水轮机极限载荷增加27%,在相同波高条件下,主轴极限载荷随波长的增加而增大。展开更多
文摘The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending stress. Various protective devices are adopted to protect the station in the extreme conditions against excessive power of airflow, excessive torsion of the shaft, over-pressure of the chamber, over-speed of rotation, power failure, and so on. It turns out that the structural design and protective methods for the 100 kW shoreline wave power station are successful.
文摘An information system for ocean wave resources and its application to wave power utilization are introduced. It can manage, analyze and process the data in the monthly report of ocean wave observation records of the State Ocean Administration, and can provide various kinds of curves and numerical characters of statistics. This system has been put into utility in Guangzhou Institute of Energy Conversion (GIEC), the Chinese Academy of Sciences since 1996. An application example is given of the investigation and analysis on ocean wave resource of the Nan Ao Island, Guangdong Province, where a 100 kW onshore OWC (oscillating water column) wave power station will be built. The wave power distribution is obtained in different wave directions for different wave periods. It is found that 70 percent of the wave power comes from the direction of ENE, and more than 95 percent of the wave power is related with direction E. The average wave power density is about 3 kW/m, and more than 80 percent of the wave power is distributed in the wave periods of 4 second to 5 second. Based on the analysis of wave resources, a site on the east coast of the island and a design width of 20 m for the 100 kW station are suggested.
文摘波浪对漂浮式潮流能水轮机的水动力性能具有重要的影响,论文采用切片理论建立和三维水轮机无辐射运动时立轴潮流水轮机水动力载荷近似计算公式,计算分析了浪流同向条件下,海能1号2×150 k W漂浮式潮流电站两叶片固定偏角立轴水轮机在波浪中的水动力载荷。计算结果表明,波浪中潮流水轮机水动力具有双频特性;水轮机工作工况下,每增加1 m波高,水轮机极限载荷增加27%,在相同波高条件下,主轴极限载荷随波长的增加而增大。