Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-Sep...Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and corona discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivity measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mechanism of vertical mixing in clouds lends support to convective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.展开更多
On the night of April 20, 2017, there was a heavy rain in Longyan City, accompanied by strong convective weather such as strong lightning, short-term heavy precipitation, and 6 - 8 thunderstorms. The three-hour rain i...On the night of April 20, 2017, there was a heavy rain in Longyan City, accompanied by strong convective weather such as strong lightning, short-term heavy precipitation, and 6 - 8 thunderstorms. The three-hour rain intensity and the six-hour rain intensity of Shanghang Tongxian Township and Nanyang Town were once in a century. Through the use of radar, radar wind profile and lightning locator data, the process can be divided into two phases: The first stage is the strong precipitation stage of Changting Datong Town during the 20 - 22 periods on the 20th. The process is accompanied by short-term heavy precipitation (59.7 mm/h), strong lightning activity, and 6 - 8 thunderstorm gales. It is a convective cold cloud dominated precipitation. The second stage is the strong precipitation stage of Shanghang Tongxian Township on the 21st, 02 - 04, and the short-term strong precipitation intensity reaches 75.7 mm/h, but the lightning and wind activity are weak, which is the convective warm cloud-oriented precipitation. There are significant differences in the strong convective weather between the two phases in the same background. The analysis shows that the strong echo of the first stage radar (above 60 dBz) is block-shaped southward, the speed of movement is fast, the height of the echo top is high, and the rear nascent monomer forms a train effect. In the second stage, the southwest-northeast-oriented convective zone moves to the northeast direction, forming the train effect of the echo zone. The center intensity is above 50 dBz, the echo top height is low, and the precipitation center moves slowly. This caused a large amount of accumulated rainfall. In this paper, the radar data is used to analyze the heavy rainfall process on the west coast of the straits, which has certain indication significance for the predictability of strong convective weather.展开更多
The Cloud Profiling Radar (CPR) onboard CloudSat is an active sensor specifically dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-la...The Cloud Profiling Radar (CPR) onboard CloudSat is an active sensor specifically dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR reflectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identified as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 kin, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 kin, and these clouds mostly have evidently small optical depths and droplet effective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m 2 It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.展开更多
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ...To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.展开更多
The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from t...The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from the Total Sky Imager (TSI), cloud base heights from the Ceilometer, and vertical temperature profiles from the Balloon-Borne Sounding System (BBSS). Six cases were chosen in summer, and seven in autumn. The averaged cloud effective radii (re), cloud optical depth (COD), aerosol total light scattering coefficient (a), and liquid water path (LWP) are, respectivey, 6.47 μm, 35.4, 595.9 mm-1, 0.19 mm in summer, and 6.07 μm, 96.0, 471.7 mm-1, 0.37 mm in autumn. The correlation coefficient between re and tc was found to change from negative to positive value as LWP increases.展开更多
Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed e...Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP(Representative Concentration Pathway) 4.5 scenario runs for2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics,four models-ACCESS1.0, ACCESS1.3, Had GEM2-CC, and Had GEM2-ES-are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average.All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about-0.99% K^-1and net radiative warming of 0.46 W m^-2K^-1, suggesting a role of positive feedback to global warming.展开更多
A natural force has been proposed, which is required to prevent the fusion and disappearance of the discrete electrical charges that are present on electrostatically attached opposing electrical charges. This force ma...A natural force has been proposed, which is required to prevent the fusion and disappearance of the discrete electrical charges that are present on electrostatically attached opposing electrical charges. This force may also explain the repulsion between objects with either matching positive or negative electrical charges. The energy of this force is referred to as KELEA (kinetic energy limiting electrostatic attraction). KELEA is especially attracted to dipolar compounds and to other materials with spatially separated opposite electrical charges. These compounds can be used to increase the level of KELEA in water. KELEA activated water can become an added source of KELEA for objects that are placed in close proximity to the water. It is generally held that the weight of an object is solely determined by its mass in relation to that of the earth. Yet, it was previously reported that the measured weight of certain KELEA attracting objects can undergo considerable variability over time. This observation is consistent with the concept that KELEA can contribute to the measured weight of certain objects. The present study strengthens this concept by demonstrating that the weight of cellulose containing materials, including paper, cotton fabrics, and wood, is increased if the materials are placed close to containers of KELEA activated water. It is further shown that electromagnetic radiation can significantly reduce the added weight of the KELEA exposed cellulose containing materials. Moreover, the previously added weight of the materials can be regained by replacing the materials back into the KELEA enhanced environment. It is proposed that the electrical charges that accompany electromagnetic radiation are able to competitively withdraw some of the KELEA from certain KELEA-enhanced objects. This effect can be reliably demonstrated using single sheets of writing paper, which are primarily composed of mechanically-bonded, branched cellulose fibers. There can be considerable fluctuations of the weight of the materials exposed to electromagnetic radiation after having been placed nearby to KELEA activated water. The weight instability is interpreted as being due to the electromagnetic radiation also triggering a dynamic process of rapid additions and removals of significant quantities of KELEA to and from objects. These observations are relevant to the further understanding of KELEA and to the potential health and climate consequences of manmade electromagnetic radiation causing a reduction in the environmental levels of KELEA.展开更多
Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixin...Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixing tee nozzle described earlier had occasional unstable slug flow. A new design that adding rotational swirl to the salt brine as it is mixed into the air stabilized the nozzle flow and no longer showed slug flow in spray pictures. Flow equations were developed for the relatively low speed of sound of a choked flow mixed brine and air nozzle. Experimental mixed flow measurements with 300b pressure and a 200 μm diameter nozzle and calculations using perfect gas, and isotropic processes equations compared well with the chocked flow equations. Analysis in EXCEL of particle sizers measurements from both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) showed production of many nanometer sized particles estimated as usable for MCB. A small number of micron sized particles were also always present but with about 90% of the sprayed mass. This is a first report with good data over the complete size range. The micron sized particles measured were similar to the measurements of earlier reports which reported no nanometer sized particles. We hypothesize that many nano-particles are always produced by liquid-air effervescent sprays, but earlier, were not observed because SMPS instruments were not available. The presence of the large mass percentage of large particles in the spray may cause problems by evaporative cooling preventing the rise of the MCB particles. We suggest future systems design with an impactor filter to remove the large particles. Calculations combining increased brine concentration, lower pressure, and larger nozzle area showed that significant reductions in required power and number of nozzles could be realized. An EXCEL model is developed to calculate flow from experimental analysis equations and compare with mixed choked flow equations. Solving with the model predicted the power required and the number of nozzles required to produce 10<sup>15</sup> particles/s. The model showed that increasing brine concentration strongly lowered total power. Lowering pressure decreased power and increased number of nozzles. Increasing nozzle area lowered the number of nozzles. This model predicted that, at 300b pressure and 200μm diameter nozzle as the experiment but using an increased brine concentration of 0.1 instead of 0.032 would require only 115 nozzles instead of 358 and power of 146 kw instead of 493 kw. Combining increased brine concentration, lower pressure, and larger nozzle area, the model predicted that with a 1 mm diameter nozzle at 30b pressure and salt concentration of 0.2, the nozzle count and power required would drop to only 24 nozzles and power of 28 kw. Whether extending the model to these conditions is valid is not known but suggests further development should be investigated. Filtering out and reusing the 90% or greater large particles mass sprayed combined with the lower power advantage of higher brine concentration is suggested for future systems.展开更多
文摘Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and corona discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivity measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mechanism of vertical mixing in clouds lends support to convective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.
文摘On the night of April 20, 2017, there was a heavy rain in Longyan City, accompanied by strong convective weather such as strong lightning, short-term heavy precipitation, and 6 - 8 thunderstorms. The three-hour rain intensity and the six-hour rain intensity of Shanghang Tongxian Township and Nanyang Town were once in a century. Through the use of radar, radar wind profile and lightning locator data, the process can be divided into two phases: The first stage is the strong precipitation stage of Changting Datong Town during the 20 - 22 periods on the 20th. The process is accompanied by short-term heavy precipitation (59.7 mm/h), strong lightning activity, and 6 - 8 thunderstorm gales. It is a convective cold cloud dominated precipitation. The second stage is the strong precipitation stage of Shanghang Tongxian Township on the 21st, 02 - 04, and the short-term strong precipitation intensity reaches 75.7 mm/h, but the lightning and wind activity are weak, which is the convective warm cloud-oriented precipitation. There are significant differences in the strong convective weather between the two phases in the same background. The analysis shows that the strong echo of the first stage radar (above 60 dBz) is block-shaped southward, the speed of movement is fast, the height of the echo top is high, and the rear nascent monomer forms a train effect. In the second stage, the southwest-northeast-oriented convective zone moves to the northeast direction, forming the train effect of the echo zone. The center intensity is above 50 dBz, the echo top height is low, and the precipitation center moves slowly. This caused a large amount of accumulated rainfall. In this paper, the radar data is used to analyze the heavy rainfall process on the west coast of the straits, which has certain indication significance for the predictability of strong convective weather.
基金Supported by the National Natural Science Foundation of China(41175032)
文摘The Cloud Profiling Radar (CPR) onboard CloudSat is an active sensor specifically dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR reflectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identified as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 kin, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 kin, and these clouds mostly have evidently small optical depths and droplet effective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m 2 It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100304)the Chinese Natural Science Foundation (Grant No. 41005073)
文摘To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-QN201)the National Basic Research Program of China(973 Program)(2006CB403706 and 2010CB950804)the National Natural Science Foundation of China(40775009 and 40875084)
文摘The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from the Total Sky Imager (TSI), cloud base heights from the Ceilometer, and vertical temperature profiles from the Balloon-Borne Sounding System (BBSS). Six cases were chosen in summer, and seven in autumn. The averaged cloud effective radii (re), cloud optical depth (COD), aerosol total light scattering coefficient (a), and liquid water path (LWP) are, respectivey, 6.47 μm, 35.4, 595.9 mm-1, 0.19 mm in summer, and 6.07 μm, 96.0, 471.7 mm-1, 0.37 mm in autumn. The correlation coefficient between re and tc was found to change from negative to positive value as LWP increases.
文摘利用CloudSat卫星搭载的云廓线雷达(cloud profiling radar,CPR)2007~2009年三年的观测资料,针对洋面非降水暖云有效廓线样本,分别对积云(Cu)、层云(St)、层积云(Sc)和高积云(Ac)等四类云型,分析了其在全球尺度的水平分布特征,并在此基础上特别考察了非降水暖云液相水含量(liquid water content,LWC)的垂直变化特性.研究发现,洋面非降水暖云中四类云型的样本占比从高至低依次为层积云76.46%、层云12.48%、积云7.45%、高积云3.61%,层积云在非降水暖云的总覆盖面积中占据主导作用.在样本量全球标准化后,四类云型的空间分布形式存在较大差异,层积云与层云主要集中于北美和南美大陆西侧近岸海域,积云与高积云则广泛分布于太平洋、大西洋和印度洋的洋面上,且高值位于大洋中部.尽管四类云型的生消机制和宏观形态存在很大差异,但不同云型LWC呈现出较为相似的垂直结构.对经几何厚度标准化后的LWC廓线进行比较,发现在四类典型非降水暖云中,由云底到云顶LWC一致呈现为先增后减的规律.云体中下部向上近似线性递增的结构基本反映了LWC的准绝热增长特性,而云体上部及云顶附近的向上递减结构明确反映了云顶普遍受到上空干空气侵入混合的强烈影响,由此导致了自云顶向下逐层衰减的云水蒸发.以云高和云厚两个参数分类的廓线统计结果还显示,LWC垂直结构受到云顶高度和云层几何厚度的影响.云层几何厚度增大时,LWC由云底到云中的递增结构会变厚,由云中到云顶的递减结构会变薄.几何厚度相同但云顶高度不同的云层,其LWC含量也有所不同,这表明对于特定云型,在生成及发展过程中,不同阶段所对应的LWC廓线结构也存在差异.
基金supported by the APEC Climate Centersupported by the UNIST research fund (Grant No. 1.09006.01)provided by a grant (Grant No. 14AWMP-B082564-01) from the Advanced Water Management Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government
文摘Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP(Representative Concentration Pathway) 4.5 scenario runs for2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics,four models-ACCESS1.0, ACCESS1.3, Had GEM2-CC, and Had GEM2-ES-are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average.All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about-0.99% K^-1and net radiative warming of 0.46 W m^-2K^-1, suggesting a role of positive feedback to global warming.
文摘A natural force has been proposed, which is required to prevent the fusion and disappearance of the discrete electrical charges that are present on electrostatically attached opposing electrical charges. This force may also explain the repulsion between objects with either matching positive or negative electrical charges. The energy of this force is referred to as KELEA (kinetic energy limiting electrostatic attraction). KELEA is especially attracted to dipolar compounds and to other materials with spatially separated opposite electrical charges. These compounds can be used to increase the level of KELEA in water. KELEA activated water can become an added source of KELEA for objects that are placed in close proximity to the water. It is generally held that the weight of an object is solely determined by its mass in relation to that of the earth. Yet, it was previously reported that the measured weight of certain KELEA attracting objects can undergo considerable variability over time. This observation is consistent with the concept that KELEA can contribute to the measured weight of certain objects. The present study strengthens this concept by demonstrating that the weight of cellulose containing materials, including paper, cotton fabrics, and wood, is increased if the materials are placed close to containers of KELEA activated water. It is further shown that electromagnetic radiation can significantly reduce the added weight of the KELEA exposed cellulose containing materials. Moreover, the previously added weight of the materials can be regained by replacing the materials back into the KELEA enhanced environment. It is proposed that the electrical charges that accompany electromagnetic radiation are able to competitively withdraw some of the KELEA from certain KELEA-enhanced objects. This effect can be reliably demonstrated using single sheets of writing paper, which are primarily composed of mechanically-bonded, branched cellulose fibers. There can be considerable fluctuations of the weight of the materials exposed to electromagnetic radiation after having been placed nearby to KELEA activated water. The weight instability is interpreted as being due to the electromagnetic radiation also triggering a dynamic process of rapid additions and removals of significant quantities of KELEA to and from objects. These observations are relevant to the further understanding of KELEA and to the potential health and climate consequences of manmade electromagnetic radiation causing a reduction in the environmental levels of KELEA.
文摘Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixing tee nozzle described earlier had occasional unstable slug flow. A new design that adding rotational swirl to the salt brine as it is mixed into the air stabilized the nozzle flow and no longer showed slug flow in spray pictures. Flow equations were developed for the relatively low speed of sound of a choked flow mixed brine and air nozzle. Experimental mixed flow measurements with 300b pressure and a 200 μm diameter nozzle and calculations using perfect gas, and isotropic processes equations compared well with the chocked flow equations. Analysis in EXCEL of particle sizers measurements from both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) showed production of many nanometer sized particles estimated as usable for MCB. A small number of micron sized particles were also always present but with about 90% of the sprayed mass. This is a first report with good data over the complete size range. The micron sized particles measured were similar to the measurements of earlier reports which reported no nanometer sized particles. We hypothesize that many nano-particles are always produced by liquid-air effervescent sprays, but earlier, were not observed because SMPS instruments were not available. The presence of the large mass percentage of large particles in the spray may cause problems by evaporative cooling preventing the rise of the MCB particles. We suggest future systems design with an impactor filter to remove the large particles. Calculations combining increased brine concentration, lower pressure, and larger nozzle area showed that significant reductions in required power and number of nozzles could be realized. An EXCEL model is developed to calculate flow from experimental analysis equations and compare with mixed choked flow equations. Solving with the model predicted the power required and the number of nozzles required to produce 10<sup>15</sup> particles/s. The model showed that increasing brine concentration strongly lowered total power. Lowering pressure decreased power and increased number of nozzles. Increasing nozzle area lowered the number of nozzles. This model predicted that, at 300b pressure and 200μm diameter nozzle as the experiment but using an increased brine concentration of 0.1 instead of 0.032 would require only 115 nozzles instead of 358 and power of 146 kw instead of 493 kw. Combining increased brine concentration, lower pressure, and larger nozzle area, the model predicted that with a 1 mm diameter nozzle at 30b pressure and salt concentration of 0.2, the nozzle count and power required would drop to only 24 nozzles and power of 28 kw. Whether extending the model to these conditions is valid is not known but suggests further development should be investigated. Filtering out and reusing the 90% or greater large particles mass sprayed combined with the lower power advantage of higher brine concentration is suggested for future systems.