期刊文献+
共找到4,597篇文章
< 1 2 230 >
每页显示 20 50 100
A Support Vector Machine(SVM)Model for Privacy Recommending Data Processing Model(PRDPM)in Internet of Vehicles
1
作者 Ali Alqarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期389-406,共18页
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie... Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance. 展开更多
关键词 Support vector machine big data IoV PRIVACY-PRESERVING
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh
2
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Studying the Interaction between Chromobacterium anophelis and the Entomopathogenic Fungus Metarhizium pingshaense in Aedes aegypti, the Dengue Vector in Burkina Faso
3
作者 Etienne M. Bilgo Djibril K. Traoré +1 位作者 Jacques E. Gnambani Abdoulaye Diabaté 《Advances in Bioscience and Biotechnology》 2025年第1期1-12,共12页
Insect-bacteria associations can influence vector competence in multiple ways. Chromobacterium anophelis, a bacterium known to be pathogenic to mosquitoes, may also act as an anti-pathogen by inhibiting the developmen... Insect-bacteria associations can influence vector competence in multiple ways. Chromobacterium anophelis, a bacterium known to be pathogenic to mosquitoes, may also act as an anti-pathogen by inhibiting the development of other pathogens within mosquitoes. The mechanism behind this inhibition remains unclear, with two hypotheses: the bacterium either boosts the mosquito’s immunity or directly targets other pathogens within the mosquito. The objective of this study is to elucidate the mechanism behind this pathogen-inhibition effect in mosquitoes. Bioassays (assessing longevity, fecundity, and fertility) were conducted on mosquitoes infected with the bacterium and an entomopathogenic fungus, Metarhizium pingshaense, whose hyphae grow on mosquitoes after killing them. The prevalence of hyphal growth was evaluated. The longevity of mosquitoes co-infected with Chromobacterium anophelis and Metarhizium pingshaense was significantly higher than those infected solely with the more virulent microorganism, which was Chromobacterium anophelis. Hyphae were observed on 100% of mosquitoes infected only with the fungus, whereas mosquitoes co-infected with the bacterium exhibited a lower prevalence of fungal hyphal growth. The number of eggs laid by infected mosquitoes was approximately the same, within the typical range (50 - 150). However, the number of larvae observed from co-infected mosquitoes was significantly higher than those produced by mosquitoes exposed to the microorganism that most reduced egg hatch rates. These results align with the hypothesis that Chromobacterium anophelis inhibits the development of other pathogens within mosquitoes by directly targeting them. 展开更多
关键词 Biological Control vector Control Anti-Pathogen Activity Chromobacterium anophelis Metarhizium pingshaense Aedes aegypti DENGUE Burkina Faso
在线阅读 下载PDF
A novel vector magnetic measurement system calibration method based on geomagnetic variation
4
作者 Ji-hao Liu Xi-hai Li +2 位作者 Chao Niu Xiao-niu Zeng Yun Zhang 《Applied Geophysics》 2025年第1期35-42,232,共9页
Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them requ... Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them require altering the magnetic vector in the vehicle coordinate system.Exploring the use of geomagnetic variation to change the geomagnetic vector in the vehicle coordinate system,this paper proposes a novel vector magnetic measurement calibration method.In this method,a vector magnetometer mounted on a vehicle and an accurate vector magnetometer separately measure the geomagnetic field at diff erent locations within the same area.Based on the physical principle that the geomagnetic variation at two nearby locations is equal,the calibration parameters of the magnetometer on the vehicle can be determined through a set of equations containing the measurements from the two magnetometers.The theoretical derivation and simulation experiment results demonstrate the feasibility of this method.Therefore,it can serve as a new alternative calibration method,especially in scenarios where a high degree of accuracy in the estimation of calibration parameters is not required. 展开更多
关键词 vector magnetic measurement CALIBRATION geomagnetic variation
在线阅读 下载PDF
A trace formula for the vector Sturm-Liouville operator with a constant delay
5
作者 LI Dan YANG Chuan-fu 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期213-222,共10页
In this work,the vector differential operator with a delay variable is studied and the regularized trace formula of the operator is obtained.
关键词 vector differential operator constant delay TRACE
在线阅读 下载PDF
The Varieties of Semi-Conformal Vectors of Rank-One Even Lattice Vertex Operator Algebras
6
作者 CHU Yan-jun GAO Yi-bo 《Chinese Quarterly Journal of Mathematics》 2025年第1期36-48,共13页
In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family... In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family of vertex operator algebras V_(√kA_(1)) associated to rank-one positive definite even lattices √kA_(1) for arbitrary positive integers k to characterize these even lattice vertex operator algebras.In such a family of lattice vertex operator algebras V_(√kA_(1)),the vertex operator algebra V_(√2A_(1)) is different from others.Hence we describe the varieties of semi-conformal vectors of V_(√2A_(1)) and the fixed vertex operator subalgebra V^(+)√2A_(1).Moreover,as applications,we study the relations between vertex operator algebras V_(√kA_(1) )and L_(sl_(2))(k,0)for arbitrary positive integers k by the viewpoint of semi-conformal homomorphisms of vertex operator algebras.For case k=2,in the series of rational simple affine vertex operator algebras L_(sl_(2))(k,0)for positive integers k,we show that L_(sl_(2))(2,0)is a unique frame vertex operator algebra with rank 3. 展开更多
关键词 Vertex operator algebra Semi-conformal vector Affine variety
在线阅读 下载PDF
Definition and Properties of a Vector-Matrix Reversal Operator
7
作者 Ramon Carbó-Dorca 《Journal of Applied Mathematics and Physics》 2025年第2期623-632,共10页
An in-depth description of an apparently forgotten matrix operation, the reversal operator, is developed. The properties of such an operation are also given, resulting in a new vector-matrix operation resembling the w... An in-depth description of an apparently forgotten matrix operation, the reversal operator, is developed. The properties of such an operation are also given, resulting in a new vector-matrix operation resembling the well-known ones of conjugation, transposition, and inversion. The reversal operator operates by ordering the object components where applied. Reversal is easy to perform as it is distributive regarding the vector sum and matrix product. Supplementary descriptions of matrix regions not often used in linear algebra, like the anti-diagonal concept, are also discussed. Some practical problems are given. 展开更多
关键词 Reversal Operator Reverse of a vector Reverse of a Matrix Reversal Invariance Reversal Matrix Linear Algebra Programming Techniques
在线阅读 下载PDF
An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction 被引量:1
8
作者 Xin LIU Jing CHEN +6 位作者 Yongzhu LIU Zhenhua HUO Zhizhen XU Fajing CHEN Jing WANG Yanan MA Yumeng HAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期545-563,共19页
Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial pertur... Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System(CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm,energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to(i) improve the relationship between the ensemble spread and the root-mean-square error and(ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short-to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS. 展开更多
关键词 multiscale uncertainty singular vector initial perturbation global ensemble prediction system
在线阅读 下载PDF
Active Fault Tolerant Nonsingular Terminal Sliding Mode Control for Electromechanical System Based on Support Vector Machine 被引量:1
9
作者 Jian Hu Zhengyin Yang Jianyong Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期189-203,共15页
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no... Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers. 展开更多
关键词 Aeronautics electromechanical actuator Fault tolerant control Support vector machine State observer Parametric uncertainty
在线阅读 下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
10
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
在线阅读 下载PDF
Vectorization and Parallel Computation of a CFD Code on YH-2 Parallel Supercomputer
11
作者 Wang Zhenghua and Li Xiaomei Xiaomei(Dept. of Computer, Changsha Institute of TechnologyChangsha, Hanan 410073, P. R. of China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期547-552,共6页
MacCormack explicit scheme and Baldwin-Lomax algebraic turbulent model are employed to solve the axisymmetric compressible Navier-Stokes equations for the numerical simulation of the supersonic mustanl floats interact... MacCormack explicit scheme and Baldwin-Lomax algebraic turbulent model are employed to solve the axisymmetric compressible Navier-Stokes equations for the numerical simulation of the supersonic mustanl floats interacted with transverse injection at the base of a cone. A temperature switch function must be added to the artificial viscous model suggested by jameson etc to enhance the scheme's ability to eliminate oscillation for some injection case.The typical code optimization techniques about vectorization and some useful concepts and terminology about multiprocessing of YH-2 parallel supercmputer is given and explatined with some examples After reconstruction and optimization the code gets a spedup 5 .973 on pipeline computer YH- 1 and gets a speedup 1 886 for 2 processors and 3.545 for 4 processors on YH-2 parallel supeercomputer by using domain decomposition method.. 展开更多
关键词 Navier-Stokes equations vectorization Patallelism Speedup.Domain decomposition
在线阅读 下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents 被引量:1
12
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT Support vector machine Machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
在线阅读 下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
13
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
在线阅读 下载PDF
A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment
14
作者 Chenguang Ouyang Suxing Hu +6 位作者 Fengqi Long Shuai Shi Zhichao Yu Kaichun Zhao Zheng You Junyin Pi Bowen Xing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期1-10,共10页
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework... Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m. 展开更多
关键词 Large-scale positioning Building vector matching Improved particle filter GPS-Denied vector map
在线阅读 下载PDF
A solution method for decomposing vector fields in Hamilton energy
15
作者 Xin Zhao Ming Yi +2 位作者 Zhou-Chao Wei Yuan Zhu Lu-Lu Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期645-653,共9页
Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the... Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the existing systems.This derivation process consists of three steps:step 1,decomposing the vector field;step 2,solving the Hamilton energy function;and step 3,verifying uniqueness.In order to easily choose an appropriate decomposition method,we propose a classification criterion based on the form of system state variables,i.e.,type-I vector fields that can be directly decomposed and type-II vector fields decomposed via exterior differentiation.Moreover,exterior differentiation is used to represent the curl of low-high dimension vector fields in the process of decomposition.Finally,we exemplify the Hamilton energy function of six classical systems and analyze the relationship between Hamilton energy and dynamic behavior.This solution provides a new approach for deducing the Hamilton energy function,especially in high-dimensional systems. 展开更多
关键词 Hamilton energy dynamical systems vector field exterior differentiation
在线阅读 下载PDF
Diffraction deep neural network-based classification for vector vortex beams
16
作者 彭怡翔 陈兵 +1 位作者 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期387-392,共6页
The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably a... The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network. 展开更多
关键词 vector vortex beam diffractive deep neural network classification atmospheric turbulence
在线阅读 下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
17
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
Antibodies elicited by Newcastle disease virus-vectored H7N9 avian influenza vaccine are functional in activating the complement system
18
作者 Zenglei Hu Ya Huang +3 位作者 Jiao Hu Xiaoquan Wang Shunlin Hu Xiufan Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2052-2064,共13页
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote... H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design. 展开更多
关键词 H7N9 subtype avian influenza virus NDV vector vaccine antibody immunity COMPLEMENT protection
在线阅读 下载PDF
Towards privacy-preserving and efficient word vector learning for lightweight IoT devices
19
作者 Nan Jia Shaojing Fu +2 位作者 Guangquan Xu Kai Huang Ming Xu 《Digital Communications and Networks》 SCIE CSCD 2024年第4期895-903,共9页
Nowadays,Internet of Things(IoT)is widely deployed and brings great opportunities to change people's daily life.To realize more effective human-computer interaction in the IoT applications,the Question Answering(Q... Nowadays,Internet of Things(IoT)is widely deployed and brings great opportunities to change people's daily life.To realize more effective human-computer interaction in the IoT applications,the Question Answering(QA)systems implanted in the IoT services are supposed to improve the ability to understand natural language.Therefore,the distributed representation of words,which contains more semantic or syntactic information,has been playing a more and more important role in the QA systems.However,learning high-quality distributed word vectors requires lots of storage and computing resources,hence it cannot be deployed on the resource-constrained IoT devices.It is a good choice to outsource the data and computation to the cloud servers.Nevertheless,it could cause privacy risks to directly upload private data to the untrusted cloud.Therefore,realizing the word vector learning process over untrusted cloud servers without privacy leakage is an urgent and challenging task.In this paper,we present a novel efficient word vector learning scheme over encrypted data.We first design a series of arithmetic computation protocols.Then we use two non-colluding cloud servers to implement high-quality word vectors learning over encrypted data.The proposed scheme allows us to perform training word vectors on the remote cloud servers while protecting privacy.Security analysis and experiments over real data sets demonstrate that our scheme is more secure and efficient than existing privacy-preserving word vector learning schemes. 展开更多
关键词 PRIVACY-PRESERVING Word vector learning Secret sharing Internet of things
在线阅读 下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
20
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
在线阅读 下载PDF
上一页 1 2 230 下一页 到第
使用帮助 返回顶部