In this short article, the upwind and central compact finite difference schemes for spatial discretization of the first-order derivative are analyzed. Comparison of the schemes is provided and the best discretization ...In this short article, the upwind and central compact finite difference schemes for spatial discretization of the first-order derivative are analyzed. Comparison of the schemes is provided and the best discretization scheme for convection dominated problems is suggested.展开更多
High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a...High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a third-order, upwind biased, shock capturing scheme was proposed. Also, a new shock fitting method, called pseudo shock fitting method, was suggested, which in principle can be with any order of accuracy. Test cases for one dimensional flows show that the new method is very satisfactory.展开更多
In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the...In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.展开更多
Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only ret...Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and tbe two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves.展开更多
文摘In this short article, the upwind and central compact finite difference schemes for spatial discretization of the first-order derivative are analyzed. Comparison of the schemes is provided and the best discretization scheme for convection dominated problems is suggested.
文摘High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a third-order, upwind biased, shock capturing scheme was proposed. Also, a new shock fitting method, called pseudo shock fitting method, was suggested, which in principle can be with any order of accuracy. Test cases for one dimensional flows show that the new method is very satisfactory.
基金NKBRSF CG 1990 3 2 80 5 National Natural Science F oundation of China !( No.5 98760 0 2 )
文摘In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.
基金supported by the National Natural Science Foundation of China (Grant Nos. 110632050, 10872205)the National Basic Research Program of China (Grant No. 2009CB724100)Projects of CAS INFO-115-B01
文摘Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and tbe two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves.