期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
Study on Ultra-Short Laser Pulse Ablation of Metals by Molecular Dynamics Simulation
1
作者 刘璇 王扬 赵丽杰 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期406-410,共5页
The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorptio... The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating. 展开更多
关键词 molecular dynamics simulation ultra-short laser pulse ablation potential function face-centered cubic metal
在线阅读 下载PDF
Theoretical analysis of ultra-short pulsed laser ablation of SiO_2 material based on a Coulomb explosion model
2
作者 林晓辉 任维松 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期261-265,共5页
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution... Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps. 展开更多
关键词 ultra-short pulsed laser Coulomb explosion nonequilibrium distribution material ablation
在线阅读 下载PDF
A New Synthetical Model of High-Power Pulsed Laser Ablation 被引量:2
3
作者 ZHANG Duan-Ming FANG Ran-Ran LI Zhi-Hua GUAN Li LI Li TAN Xin-Yu LIU Dan LIU Gao-Bin HU De-Zhi Department of Physics,Huazhong University of Science and Technology,Wuhan 430074,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第7期163-168,共6页
We develop a new synthetical model of high-power pulsed laser ablation,which considers the dynamicabsorptance,vaporization,and plasma shielding.And the corresponding heat conduction equations with the initial andbound... We develop a new synthetical model of high-power pulsed laser ablation,which considers the dynamicabsorptance,vaporization,and plasma shielding.And the corresponding heat conduction equations with the initial andboundary conditions are given.The numerical solutions are obtained under the reasonable technical parameter condi-tions by taking YBa_2Cu_3O_7 target for example.The space-dependence and time-dependence of temperature in targetat a certain laser fluence are presented,then,the transmitted intensity through plasma plume,space-dependence oftemperature and ablation rate for different laser fluences are significantly analyzed.As a result,the satisfactorily goodagreement between our numerical results and experimental results indicates that the influences of the dynamic absorp-tance,vaporization,and plasma shielding cannot be neglected.Taking all the three mechanisms above simultaneouslyinto account for the first time,we cause the present model to be more practical. 展开更多
关键词 pulsed laser ablation dynamic absorptance VAPORIZATION laser produced plasma
在线阅读 下载PDF
Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy 被引量:2
4
作者 Yu ZHANG Jianjun WU +2 位作者 Yang OU Daixian ZHANG Jian LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第4期83-89,共7页
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagn... In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagnetic acceleration.Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster.The spectral lines at different times,positions and discharge intensities are experimentally recorded,and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines.With the discharge energy of 24 J,laser energy of 0.6 J and the use of aluminum propellant,the specific impulse and thrust efficiency reach 6808 s and 70.6%,respectively. 展开更多
关键词 laser ablation pulseD PLASMA THRUSTER optical EMISSION SPECTROSCOPY PLASMA PROpulsION performance
在线阅读 下载PDF
Pulsed laser ablation in liquid of sp-carbon chains:Status and recent advances 被引量:1
5
作者 Pietro Marabotti Sonia Peggiani +1 位作者 Alessandro Vidale Carlo Spartaco Casari 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期325-345,共21页
This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for p... This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for polyynes synthesis thanks to its flexibility with varying laser parameters,solvents,and targets.This allows the control of sp-carbon chains properties as yield,length,termination and stability.Although many reviews related to PLAL have been published,a comprehensive work reporting the current status and advances related to the synthesis of sp-carbon chains by PLAL is still missing.Here we first review the principle of PLAL and the mechanisms of formation of sp-carbon chains.Then we discuss the role of laser fluence(i.e.energy density),solvent,and target for sp-carbon chains synthesis.Lastly,we report the progress related to the prolonged stability of sp-carbon chains by PLAL encapsulated in polymeric matrices.This review will be a helpful guide for researchers interested in synthesizing sp-carbon chains by PLAL. 展开更多
关键词 pulsed laser ablation in liquid sp-carbon chains CARBYNE carbon nanostructures
在线阅读 下载PDF
Grain refining in weld metal using short-pulsed laser ablation during CW laser welding of 2024-T3 aluminum alloy 被引量:2
6
作者 Masaki Kasuga Tomokazu Sano Akio Hirose 《International Journal of Extreme Manufacturing》 2019年第4期34-41,共8页
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a... The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region. 展开更多
关键词 2024 aluminum alloy hot cracking laser welding grain refinement dendrite fragmentation short pulsed laser laser ablation
在线阅读 下载PDF
Comparison on Morphological and Optical Properties of TiO_(2) Thin Films Grown by Single-Pulse and Multi-Pulse Laser Ablation 被引量:2
7
作者 Yonic Penaloza-Mendoza Luis Ponce-Cabrera 《Journal of Surface Engineered Materials and Advanced Technology》 2015年第1期17-23,共7页
TiO2 thin films were prepared on glass substrates using the PLD (Pulsed Laser Deposition) technique. In order to carry out the ablation process, a Nd:YAG laser was used emitting in 1064 nm wavelength at 10 Hz repetiti... TiO2 thin films were prepared on glass substrates using the PLD (Pulsed Laser Deposition) technique. In order to carry out the ablation process, a Nd:YAG laser was used emitting in 1064 nm wavelength at 10 Hz repetition rate, set up for operating in both single-pulse and multi-pulse regimes. A comparison of the deposition rate, the optical and morphological properties of the layers obtained from both ablation regimes was made, which showed that the multi-pulsed ablation produced layers with a higher surface quality and better optical properties. 展开更多
关键词 pulsed laser Deposition Single-pulse ablation Multi-pulse ablation TiO_(2) Thin Film
在线阅读 下载PDF
Synthesis of Metal/Poly(diphenylsilylenemethylene) Nanocomposite Thin Films by Pulsed Laser Ablation
8
作者 宋仁国 WANG Chao JIANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期6-9,共4页
A new technique to synthesize poly(diphenylsilylenemethylene) (PDPhSM) matrix nanocomposite thin films containing metal nanoparticles such as Ni, AI, Zn, and W produced by pulsed laser ablation has been developed.... A new technique to synthesize poly(diphenylsilylenemethylene) (PDPhSM) matrix nanocomposite thin films containing metal nanoparticles such as Ni, AI, Zn, and W produced by pulsed laser ablation has been developed. First, 1,1,3,3-tetra- phenyl-1,3-disilacyclobutane (TPDC) films were deposited on 4 cm2 silicon substrates cut from c-Si wafers by conventional vacuum evaporation under a pressure of 4.0×10^-3 Pa; then metal nanoparticles were deposited onto the TPDC films by pulsed laser ablation; finally the TPDC films with metal nanoparticles were heated in an electric furnace in an air atmosphere at 553 K for 10 rain to induce ring-opening polymerization of TPDC. The results indicate that it is easy to synthesize metal/ PDPhSM nanocomposite thin films by pulsed laser ablation. The morphologies and size of metal nanoparticles are closely related to the kinds of metal. Also, the polymerization efficiency depends on the kinds of metal nanoparticles deposited on the TPDC monomer films by pulsed laser ablation. In addition, The laser ablated metal nanoparticles penetrate into the TPDC monomer films during pulsed laser ablation while the DC sputtered metal nanoparticles just lay on the surface of TPDC films. 展开更多
关键词 poly(diphenylsilylenemethylene) (PDPhSM) nanocomposite thin films metal nanoparticles pulsed laser ablation
在线阅读 下载PDF
Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation
9
作者 V.SIVAKUMARAN AJAI KUMAR +2 位作者 R.K.SINGH V.PRAHLAD H.C.JOSHI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第3期204-208,共5页
High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In orde... High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In order to identify different atomic processes in evolving plasma, time resolved spectral emission studies at different inter-pulse delays have been performed for ionic and neutral lithium lines emitting from different levels. Along with the enhancement in emission intensity, a large line broadening and spectral shift, especially in the case of excited state transition Li I 610.3 nm have been observed in the presence of the second pulse. This broadening and shift gradually decrease with increasing time delay. Another interesting feature is the appearance of a multi-component structure in the ionic line at 548.4 nm and these components change conversely into a single structure at the later stages of the plasma. The multi-component structures are correlated with the presence of different velocity (temperature) distributions in non-LTE conditions. Atomic analyses by computing photon emissivity coefficients with an ADAS code have been used to identify the above processes. 展开更多
关键词 laser ablation double pulse
在线阅读 下载PDF
Determination of the Nucleation Region Location of Si Nano-Crystal Grains Prepared by Pulsed Laser Ablation through Changing Position of Substrates
10
作者 Zechao Deng Qingshan Luo +4 位作者 Ziqiang Hu Xiaolong Zhang Xuecheng Ding Lizhi Chu Yinglong Wang 《Journal of Surface Engineered Materials and Advanced Technology》 2013年第2期133-137,共5页
To determine the nucleation region location of Si nano-crystal grains, pulsed laser ablation of Si target is performed in Ar gas of 10 Pa at room temperature with laser fluence of 4 J/cm2, the substrates are located h... To determine the nucleation region location of Si nano-crystal grains, pulsed laser ablation of Si target is performed in Ar gas of 10 Pa at room temperature with laser fluence of 4 J/cm2, the substrates are located horizontal under ablation spot with different vertical distance. Characteristics of deposited grains are described by scanning electron microscopy, Raman scattering and X-ray diffraction spectra, the results indicate that deposition position on substrates in a certain range is relative to target surface, which changes according to different vertical distance of substrates to ablation spot. Grain size increased?at first and then decreased with addition of lateral distances to target in the range, but the integral distribution rule was independent of position of substrates. Combining with hydrodynamics model, nucleation division model, thermokinetic equation and flat parabolic motion, spatial nucleation region location of grains is obtained through numerical calculations, which is 2.7 mm-43.2 mm to target surface along the plume axis. 展开更多
关键词 NUCLEATION REGION LOCATION SI NANO-CRYSTAL Grains pulsed laser ablation
在线阅读 下载PDF
The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant
11
作者 Yuanzheng Zhao Sheng Tan +3 位作者 Jianjun Wu Yu Zhang Yang Ou Peng Zheng 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第10期60-71,共12页
In this study,a laser-assisted pulsed plasma thruster(LA-PPT)with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the uniqu... In this study,a laser-assisted pulsed plasma thruster(LA-PPT)with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the unique structure of the thruster,metals can also be used as propellants,and a higher specific impulse is expected.The ablation quality,morphology,and plume distribution of various metals(aluminium alloy,red copper,and carbon steel)with different laser energies were studied experimentally.The ablation morphology and plume distribution of red copper were more uniform,as compared to those of other metals,and the ablation quality was higher,indicating its greater suitability for LA-PPT.The plume generated by nanosecond laser ablation of aluminium alloy expanded faster,which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter.In addition,when the background pressure was 0.005 Pa,an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy,which may significantly reduce the utilisation rate of the propellant. 展开更多
关键词 plasma plume expansion dynamics plume splitting phenomenon nanosecond laser ablation laser-assisted pulsed plasma thruster
在线阅读 下载PDF
Structural Analysis of TiC and TiC-C Core-Shell Nanostructures Produced by Pulsed-Laser Ablation
12
作者 Luis Enrique Iniesta Piña Miguel Ángel Camacho López +2 位作者 Rafael Vilchis Néstor Víctor Hugo Castrejón Sánchez Delfino Reyes Contreras 《Journal of Materials Science and Chemical Engineering》 2023年第7期1-13,共13页
This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of... This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of synthesis is generally called pulsed laser ablation in liquid (PLAL). The presence of carbon structures in the solution contributed to the carbon content in the produced Ti-based nanomaterials. The atomic composition of the produced nanostructures was analyzed using SEM-EDS, while TEM micrographs revealed the formation of spherical TiC and core-shell nanostructures ranging from 40 to 100 nm. The identification of atomic planes by HRTEM confirmed a 10 nm diameter C-shell with a graphite structure surrounding the Ti-core. Raman spectroscopy allowed for the identification of D and G peaks for graphite and a Raman signal at 380 and 600 cm<sup>−1</sup>, assigned to TiC. The results contribute to the state-of-the-art production of TiC and Ti-C core-shell nanostructures using the PLAL route. 展开更多
关键词 laser ablation TIC NANOPARTICLES Core-Shell Nanoparticles pulsed laser
在线阅读 下载PDF
Tungsten ion source under double-pulse laser ablation system
13
作者 Ahmed Asaad I Khalil Ashraf I Hafez +1 位作者 Mahmoud E Elgohary Mohamed A Morsy 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期285-296,共12页
New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the exper... New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the experimental parameters is achieved to enhance the signal-to-noise ratio of the emission spectra. The velocity distribution of the emitted plasma cloud is carefully measured. The influences of the potential difference between the bias electrodes, laser wavelength and intensity on the current signal are also studied. The results show that the increase in the tungsten ion velocity under the double-pulse lasers causes the output current signal to increase by about three folds. The electron density and temperature are calculated by using the Stark-broadened line profile of tungsten line and Boltzmann plot method of the upper energy levels, respectively. The signal intensity dependence of the tungsten ion angular distribution is also analyzed. The results indicate that the double-pulse laser ablation configuration is more potent technique for producing more metal ion source deposition, thin film formation, and activated plasma-facing component material. 展开更多
关键词 tungsten ion beam double-pulse lasers ablation system laser ablation system optical Instrumentation
在线阅读 下载PDF
Pulsed laser interference patterning of transition-metal carbides for stable alkaline water electrolysis kinetics
14
作者 Yewon Oh Jayaraman Theerthagiri +3 位作者 Ahreum Min Cheol Joo Moon Yiseul Yu Myong Yong Choi 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期65-80,共16页
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ... We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers. 展开更多
关键词 ACETONE H_(2)and O_(2)evolution reactions pulsed laser ablation surface defects transition-metal carbides water electrolyzer
在线阅读 下载PDF
Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices 被引量:5
15
作者 Yongchao Yu Shi Bai +1 位作者 Shutong Wang Anming Hu 《Engineering》 SCIE EI 2018年第6期779-786,共8页
Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and ... Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing. 展开更多
关键词 ultra-short pulseD laser processing MICRODEVICES SUPERCAPACITOR Electronic TONGUE Surface-enhanced RAMAN spectroscopy
在线阅读 下载PDF
A review on glass welding by ultra-short laser pulses 被引量:6
16
作者 Kristian Cvecek Sarah Dehmel +1 位作者 Isamu Miyamoto Michael Schmidt 《International Journal of Extreme Manufacturing》 2019年第4期1-10,共10页
Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting no... Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers. 展开更多
关键词 USP glass welding ultra-short pulsed laser processing brittle materials glass joining
在线阅读 下载PDF
Taper Angle Correction in Cutting of Complex Micro-mechanical Contours with Ultra-Short Pulse Laser 被引量:5
17
作者 J. Auerswald A. Ruckli +3 位作者 T. Gschwilm P. Weber D. Diego-Vallejo H. Schliiter 《Journal of Mechanics Engineering and Automation》 2016年第7期334-338,共5页
The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ... The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii. 展开更多
关键词 ultra-short pulse laser cutting kerf taper angle zero taper 5-axis micro machining.
在线阅读 下载PDF
Thermal characteristics of double-layer thin film target ablated by femtosecond laser pulses
18
作者 高勋 宋晓伟 林景全 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期282-286,共5页
Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation s... Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold. 展开更多
关键词 femtosecond laser ablation pulse train two-temperature model
在线阅读 下载PDF
Cooling rate calibration and mapping of ultra-short pulsed laser modifications in fused silica by Raman and Brillouin spectroscopy
19
作者 Michael Bergler Kristian Cvecek +3 位作者 Ferdinand Werr Martin Brehl Dominique De Ligny Michael Schmidt 《International Journal of Extreme Manufacturing》 2020年第3期161-172,共12页
This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local... This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local cooling rate distribution in ultra-short pulsed(USP)laser modification.In order to determine the thermal history(e.g.cooling rate and fictive temperature)of fused silica,high-resolution inelastic light-scattering experiments(Raman and Brillouin spectroscopy)were investigated.Calibrations were performed and compared to the existing literature to quantify structural changes due to a change of fictive temperature.Compared to existing calibrations,this paper provides an extension to lower and higher cooling rates.Using this new set of calibrations,we characterized a USP laser modification in fused silica and calculated the local fictive temperature distribution.An equation relating the fictive temperature(Tf)to cooling rates is given.A maximum cooling rate of 3000 K min-1 in the glass transition region around 1200℃ was deduced from the Raman analysis.The Brillouin observations are sensitive to both the thermal history and the residual stress.By comparing the Raman and Brillouin observations,we extracted the local residual stress distribution with high spatial resolution.For the first time,combined Raman and Brillouin inelastic light scattering experiments show the local distribution of cooling rates and residual stresses(detailed behavior of the glass structure)in the interior and the surrounding of an USP laser modified zone. 展开更多
关键词 glass structure ultra-short pulsed laser fused silica cooling rate fictive temperature Raman spectroscopy Brillouin spectroscopy
在线阅读 下载PDF
Spectrum shuttle for producing spatially shapable GHz burst pulses 被引量:1
20
作者 Keitaro Shimada Ayumu Ishijima +3 位作者 Takao Saiki Ichiro Sakuma Yuki Inada Keiichi Nakagawa 《Advanced Photonics Nexus》 2024年第1期11-19,共9页
Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent ... Spatiotemporal shaping of ultrashort pulses is pivotal for various technologies,such as burst laser ablation and ultrafast imaging.However,the difficulty of pulse stretching to subnanosecond intervals and independent control of the spatial profile for each pulse limit their advancement.We present a pulse manipulation technique for producing spectrally separated GHz burst pulses from a single ultrashort pulse,where each pulse is spatially shapable.We demonstrated the production of pulse trains at intervals of 0.1 to 3 ns in the 800-and 400-nm wavelength bands and applied them to ultrafast single-shot transmission spectroscopic imaging(4 Gfps)of laser ablation dynamics with two-color sequentially timed all-optical mapping photography.Furthermore,we demonstrated the production of pulse trains containing a shifted or dual-peak pulse as examples of individual spatial shaping of GHz burst pulses.Our proposed technique brings unprecedented spatiotemporal manipulation of GHz burst pulses,which can be useful for a wide range of laser applications. 展开更多
关键词 pulse stretching spatiotemporal shaping ultrashort pulse trains ultrafast imaging burst laser ablation transmission spectroscopic imaging.
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部