期刊文献+
共找到121,004篇文章
< 1 2 250 >
每页显示 20 50 100
Two-dimensional directional modulation with dual-mode vortex beam for security transmission
1
作者 ZHU Changju SONG Maozhong +1 位作者 DANG Xiaoyu ZHU Qiuming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1108-1118,共11页
A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevat... A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevation and azimuth of the vortex beam are modulated into the constellation.which can form the digital waveform with the encoding modulation.Since the signal is direction-dependent,the modulated waveform is purposely distorted in other directions to offer a security technology.Two concentric uniform circular arrays(UCAs)with different radii are excited to generate dual vortex beams with orthogonality for the composite signal,which can increase the demodulation difficulty.Due to the phase propagation characteristics of vortex beam,the constellation at the desired azimuth angle will change continuously within a wavelength.A desired single antenna receiver can use the propagation phase compensation and an opposite helical phase factor for the signal demodulation in the desired direction.Simulations show that the proposed OAM-DM scheme offers a security approach with direction sensitivity transmission. 展开更多
关键词 directional modulation(DM) orbital angular momentum(OAM) physical-layer security directional sensitivity
在线阅读 下载PDF
Two-Dimensional Direction Finding via Sequential Sparse Representations
2
作者 Yougen Xu Ying Lu +1 位作者 Yulin Huang Zhiwen Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期169-175,共7页
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev... The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method. 展开更多
关键词 array signal processing adaptive array direction finding sparse representation
在线阅读 下载PDF
Security-Enhanced Directional Modulation Based on Two-Dimensional M-WFRFT 被引量:1
3
作者 Zhou Zhuang Luo Junshan +1 位作者 Wang Shilian Xia Guojiang 《China Communications》 SCIE CSCD 2024年第5期229-248,共20页
Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-sc... Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system. 展开更多
关键词 bit error rate directional modulation phased array secrecy rate weighted fractional Fourier transform
在线阅读 下载PDF
Moiré physics in two-dimensional materials:Novel quantum phases and electronic properties
4
作者 Zi-Yi Tian Si-Yu Li +2 位作者 Hai-Tao Zhou Yu-Hang Jiang Jin-Hai Mao 《Chinese Physics B》 2025年第2期2-17,共16页
Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehen... Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field. 展开更多
关键词 two-dimensional quantum material moirésuperlattice flat band strong correlations
在线阅读 下载PDF
Numerical simulation of microstructure and microporosity morphology in directional solidification of aluminum-copper alloys:Effect of copper content and withdrawal rate
5
作者 Wei Yuan Hai-dong Zhao +3 位作者 Xu Shen Chun Zou Yuan Liu Qing-yan Xu 《China Foundry》 2025年第1期33-44,共12页
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma... Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics. 展开更多
关键词 MICROPOROSITY DENDRITES cellular automaton Al-Cu alloys directional solidification
在线阅读 下载PDF
Role of two-dimensional shear wave elastography in predicting posthepatectomy liver failure:A step forwards in hepatic surgery
6
作者 Hua-Zhen Deng Yu-Feng Liu Han-Wen Zhang 《World Journal of Gastrointestinal Surgery》 2025年第3期415-417,共3页
This study explores the significance of using two-dimensional shear wave elastography(2D-SWE)to assess liver stiffness(LS)and spleen area(SPA)for predicting post-hepatectomy liver failure(PHLF).By providing a non-inva... This study explores the significance of using two-dimensional shear wave elastography(2D-SWE)to assess liver stiffness(LS)and spleen area(SPA)for predicting post-hepatectomy liver failure(PHLF).By providing a non-invasive method to measure LS,which correlates with the degree of liver fibrosis,and SPA,an indicator of portal hypertension,2D-SWE offers a comprehensive evaluation of a patient’s hepatic status.These advancements are particularly crucial in hepatic surgery,where accurate preoperative assessments are essential for optimizing surgical outcomes and minimizing complications.This letter highlights the prac-tical implications of integrating 2D-SWE into clinical practice,emphasizing its potential to improve patient safety and surgical precision by enhancing the ability to predict PHLF and tailor surgical approaches accordingly. 展开更多
关键词 two-dimensional shear wave elastography Liver stiffness Spleen area Post-hepatectomy liver failure Non-invasive techniques Hepatic surgery
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
7
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Challenges and development direction of deep fragmented soft coalbed methane in China
8
作者 Yiyu Lu Guilin Zhao +7 位作者 Zhaolong Ge Yunzhong Jia Jiren Tang Tianyi Gong Shan Huang Zhongtan Li Wenyu Fu Jianyu Mi 《Earth Energy Science》 2025年第1期38-64,共27页
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens... Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively. 展开更多
关键词 Deep coalbed methane Exploration and development technology Reservoir characteristics Critical desorption pressure Gas production mechanism Development direction
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
9
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Directional Design of Materials Based on Multi-Objective Optimization:A Case Study of Two-Dimensional Thermoelectric SnSe 被引量:1
10
作者 Shenshen Yan Yi Wang +2 位作者 Zhibin Gao Yang Long Jie Ren 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第2期84-90,共7页
The directional design of functional materials with multi-objective constraints is a big challenge,in which performance and stability are determined by a complicated interconnection of different physical factors.We ap... The directional design of functional materials with multi-objective constraints is a big challenge,in which performance and stability are determined by a complicated interconnection of different physical factors.We apply multi-objective optimization,based on the Pareto Efficiency and Particle-Swarm Optimization methods,to design new functional materials directionally.As a demonstration,we achieve the thermoelectric design of 2D SnSe materials via the above methods.We identify several novel metastable 2D SnSe structures with simultaneously lower free energy and better thermoelectric performance in their experimentally reported monolayer structures.We hope that the results of our work on the multi-objective Pareto Optimization method will represent a step forward in the integrative design of future multi-objective and multi-functional materials. 展开更多
关键词 materials. methods. directional
在线阅读 下载PDF
DEVELOPMENT OF FAST TWO-DIMENSIONAL HIGH-RESOLUTION DIRECTION-FINDING TECHNIQUES
11
作者 吴仁彪 《Journal of Electronics(China)》 1994年第1期11-21,共11页
A fast separable approach based on a cross array is presented, which has coarsegrained parallelism. Its computational load is far less than that of the two-dimensional (2-D) direct processing method and other existing... A fast separable approach based on a cross array is presented, which has coarsegrained parallelism. Its computational load is far less than that of the two-dimensional (2-D) direct processing method and other existing separable approaches. In order to compensate for the performance degradation due to separable processing, two postprocessing schemes are also proposed. Some computer simulation results are provided for illustration in the end. 展开更多
关键词 Array SIGNAL PROCESSING HIGH-RESOLUTION direction-finding TECHNIQUES SEPARABLE PROCESSING
在线阅读 下载PDF
Boosting MA-based two-dimensional Ruddlesden-Popper perovskite solar cells by incorporating a binary spacer 被引量:1
12
作者 Xue Dong Yinhao Tang +10 位作者 Yiqun Li Xin Li Yuzhen Zhao Wenqi Song Fangmin Wang Shudong Xu Yipeng Zhou Chenxin Ran Zongcheng Miao Lin Song Zhongbin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期348-356,I0008,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ... Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts. 展开更多
关键词 Perovskite solar cells two-dimensional Ruddlesden-Popper perovskite Binary spacers Stability
在线阅读 下载PDF
Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection 被引量:1
13
作者 Xieming Xu Yiheng Wu +5 位作者 Yi Zhang Xiaohui Li Fang Wang Xiaoming Jiang Shaofan Wu Shuaihua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期139-146,共8页
Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu... Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications. 展开更多
关键词 MeV X-ray detection single-crystal X-ray detectors two-dimensional perovskites X-ray imaging
在线阅读 下载PDF
New direction for surgery:Super minimally invasive surgery 被引量:2
14
作者 En-Qiang Linghu 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1676-1679,共4页
The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm... The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm because of its lesser invasiveness.However,changes in anatomical structures of the body and reconstruction of internal organs or different organs are common after traditional surgery or MIS,decreasing the quality of life of patients post-operation.Thus,I propose a new treatment mode,super MIS(SMIS),which is defined as“curing a disease or lesion which used to be treated by MIS while preserving the integrity of the organs”.In this study,I describe the origin,definition,operative channels,advantages,and future perspectives of SMIS. 展开更多
关键词 Super minimally invasive surgery Minimally invasive surgery Treatment mode Traditional Surgery New direction for surgery
在线阅读 下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
15
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy directional entropic scale ANISOTROPY Hydraulic conductivity
在线阅读 下载PDF
Progress on two-dimensional ferrovalley materials
16
作者 李平 刘邦 +2 位作者 陈帅 张蔚曦 郭志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期32-43,共12页
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t... The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics. 展开更多
关键词 ferrovalley valley polarization two-dimensional materials multi-field tunable
在线阅读 下载PDF
Preventing brain aging by the artificial enforcement of the unfolded protein response:future directions
17
作者 Felipe Cabral-Miranda Claudio Hetz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期393-394,共2页
As the life expectancy of the world’s population increases,age-related diseases are emerging as one of the greatest problems facing modern society.The onset of dementia and neurodegenerative diseases is strictly depe... As the life expectancy of the world’s population increases,age-related diseases are emerging as one of the greatest problems facing modern society.The onset of dementia and neurodegenerative diseases is strictly dependent on aging as a major risk factor and has a profound impact on various aspects of the lives of individuals and their families. 展开更多
关键词 DISEASES AGING directionS
在线阅读 下载PDF
Recent advances in two-dimensional photovoltaic devices
18
作者 Haoyun Wang Xingyu Song +6 位作者 Zexin Li Dongyan Li Xiang Xu Yunxin Chen Pengbin Liu Xing Zhou Tianyou Zhai 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期26-40,共15页
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe... Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices. 展开更多
关键词 two-dimensional materials photovoltaic devices PHOTODETECTORS solar cells HETEROSTRUCTURES
在线阅读 下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
19
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 two-dimensional altermagnetic materials altermagnetism spin splitting first-principles calculations
在线阅读 下载PDF
Unlocking the potential of ultra-thin two-dimensional antimony materials:Selective growth and carbon coating for efficient potassium-ion storage
20
作者 Dongyu Zhang Zhaomin Wang +4 位作者 Yabin Shen Yeguo Zou Chunli Wang Limin Wang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期440-449,共10页
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b... Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries. 展开更多
关键词 ANTIMONY two-dimensional materials Selective growth Nitrogen-doped carbon Potassium-ion batteries
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部