The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary ...The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins.展开更多
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three...The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.展开更多
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati...An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.展开更多
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ...Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ...Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo...Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.展开更多
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by...This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac...Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.展开更多
The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which ma...The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which mainly consists of a probe motion scanning mechanism,fully automated test control software,and data processing methods.Iterative correction is applied to the original readings obtained from the scanning tests to enhance testing accuracy.Using this test system,detailed tests are conducted on a 1.5-stage subsonic axial compressor under different operating conditions.The test results effectively captured the impact of surface roughness and tip clearance variations on compressor performance.The distribution characteristics of parameters measured in inter-stage sections can characterize the effects of blade wake area and changes in aerodynamic performance at different blade heights.The developed test system can be extended to multi-stage compressors.展开更多
A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fu...A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fundamental solutions are advantageous in treating flows past an arbitrary number of arbitrarily positioned and oriented oblate spheroids. The least squares technique was adopted herein so that the convergence difficulties often encountered in solving three-dimensional problems were completely avoided. The examples demonstrate that present approach is highly accurate, consistently stable and computationally efficient. The oblate spheroid may be used to model a variety of particle shapes between a circular disk and a sphere. For the first time, the effect of various geometric factors on the forces and torques exerted on two oblate spheroids were systematically studied by using the proposed fundamental solutions. The generality of this approach was illustrated by two problems of three spheroids.展开更多
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res...For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.展开更多
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo...The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.展开更多
基金funded by the National Key Research and Development Program(Grant Nos.2021YFB1507404 and 2018YFC0604305)the Project of China Geological Survey(Grant Nos.DD20221680,DD20189113,and DD20190127).
文摘The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
基金Financial support for this work was obtained from the National Natural Science Foundation of China(No.51074059)
文摘The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.
基金This project is supported by National Natural Science Foundation ofChina(No. 50406017)
文摘An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.
基金This project is supported by National Natural Science Foundation of China (No. 50175042).
文摘Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China (IRT_15R29)the Basic Research Innovation Group Project of Gansu Province, China (21JR7RA347)the Natural Science Foundation of Gansu Province, China (20JR10RA231)。
文摘Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
基金financially supported by the fellowship of the China Postdoctoral Science Foundation (2021M703466)the Natural Science Foundation of Gansu Province, China (20JR10RA231)the Natural Science Foundation of Gansu Province, China (22JR5RA050)。
文摘Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
基金The research was funded by Science and Technology Project of Hebei Education Department(Project Number:QN2022198).Y.C.received the grant.
文摘This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
基金supported by the financial support from the National Natural Science Foundation of China(52204084)Project funded by the China Postdoctoral Science Foundation(2021M700388).
文摘Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.
基金National Science and Technology Major Project of China No.2017-V-0012-0064。
文摘The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which mainly consists of a probe motion scanning mechanism,fully automated test control software,and data processing methods.Iterative correction is applied to the original readings obtained from the scanning tests to enhance testing accuracy.Using this test system,detailed tests are conducted on a 1.5-stage subsonic axial compressor under different operating conditions.The test results effectively captured the impact of surface roughness and tip clearance variations on compressor performance.The distribution characteristics of parameters measured in inter-stage sections can characterize the effects of blade wake area and changes in aerodynamic performance at different blade heights.The developed test system can be extended to multi-stage compressors.
文摘A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fundamental solutions are advantageous in treating flows past an arbitrary number of arbitrarily positioned and oriented oblate spheroids. The least squares technique was adopted herein so that the convergence difficulties often encountered in solving three-dimensional problems were completely avoided. The examples demonstrate that present approach is highly accurate, consistently stable and computationally efficient. The oblate spheroid may be used to model a variety of particle shapes between a circular disk and a sphere. For the first time, the effect of various geometric factors on the forces and torques exerted on two oblate spheroids were systematically studied by using the proposed fundamental solutions. The generality of this approach was illustrated by two problems of three spheroids.
基金Projects(50974033,51104035)supported by the National Natural Science Foundation of China
文摘For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.
基金Supported by the National Natural Science Foundation of China(50906040)the Nanjing University of Aeronautics and Astronautics Research Funding(NZ2012107,NS2010052)~~
文摘The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.