期刊文献+
共找到17,106篇文章
< 1 2 250 >
每页显示 20 50 100
Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area−Evidence from heat flow determination in the Archean of D01 well
1
作者 Ya-hui Yao Xiao-feng Jia +5 位作者 Sheng-tao Li Jun-yan Cui Hong Xiang Dong-dong Yue Qiu-xia Zhang Zhao-long Feng 《Journal of Groundwater Science and Engineering》 2025年第1期22-33,共12页
The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary ... The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins. 展开更多
关键词 Heat flow vertical difference Archean crystalline basement Thermal conductivity Niutuozhen geothermal field Present-day temperature field Geothermal genetic mechanism D01 well
在线阅读 下载PDF
Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber 被引量:4
2
作者 Xu-Dong Zhang Bao-Chun Fan +2 位作者 Ming-Yue Gui Zhen-Hua Pan Gang Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期66-72,共7页
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ... Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems. 展开更多
关键词 Continuously rotating detonation - Three- dimensional flow field structure - Numerical study Detonation parameters deficit ~ Effects of wall geometries
在线阅读 下载PDF
Bulking factor of the strata overlying the gob and a three-dimensional numerical simulation of the air leakage flow field 被引量:18
3
作者 Shao Hao Jiang Shuguang +1 位作者 Wang Lanyun Wu Zhengyan 《Mining Science and Technology》 EI CAS 2011年第2期261-266,共6页
The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three... The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face. 展开更多
关键词 Gob Bulking factor flow field Numerical simulation Spontaneous combustion of coal
在线阅读 下载PDF
EXPERIMENTAL INVESTIGATION FOR THE EFFECT OF ROTATION ON THREE-DIMENSIONAL FLOW FIELD IN FILM-COOLED TURBINE 被引量:2
4
作者 YUAN Feng ZHU Xiaocheng DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期10-15,共6页
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati... An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged. 展开更多
关键词 Film-cooled turbine rotor PIV measurement Blowing ratio three-dimensional flow field
在线阅读 下载PDF
NUMERICAL ANALYSIS ON THREE-DIMENSIONAL FLOW FIELD OF TURBINE IN TORQUE CONVERTER 被引量:11
5
作者 LIU Yue PAN Yuxue LIU Chunbao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期94-96,共3页
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ... Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data. 展开更多
关键词 Torque converter Turbine flow field Numerical analysis
在线阅读 下载PDF
Research on simulation of gun muzzle flow field empowered by artificial intelligence 被引量:1
6
作者 Mengdi Zhou Linfang Qian +3 位作者 Congyong Cao Guangsong Chen Jin Kong Ming-hao Tong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期196-208,共13页
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie... Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions. 展开更多
关键词 Muzzle flow field Artificial intelligence Deep learning Data-physical fusion driven Shock wave
在线阅读 下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:1
7
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation flow field characteristics Protection benefits
在线阅读 下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
8
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics three-dimension
在线阅读 下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
9
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
在线阅读 下载PDF
Numerical simulation of flow field deposition and erosion characteristics around bridge-road transition section
10
作者 ZHANG Kai WANG Zhenghui +3 位作者 WANG Tao TIAN Jianjin ZHANG Hailong LIU Yonghe 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1491-1508,共18页
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo... Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand. 展开更多
关键词 SANDSTORM flow field Bridge-road transition section Sedimentation erosion Numerical simulation
在线阅读 下载PDF
Flow Field Characteristics of Multi-Trophic Artificial Reef Based on Computation Fluid Dynamics
11
作者 HUANG Junlin LI Jiao +3 位作者 LI Yan GONG Pihai GUAN Changtao XIA Xu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期317-327,共11页
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef... On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity. 展开更多
关键词 artificial reef flow field characteristics computation fluid dynamics multi-trophic structure
在线阅读 下载PDF
Analysis of the Flow Field and Impact Force in High-Pressure Water Descaling
12
作者 Yue Cui Liyuan Wang +2 位作者 Jian Wu Haisheng Liu Di Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第1期165-177,共13页
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by... This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications. 展开更多
关键词 High pressure water descaling flow field analysis FSI target distance strike range
在线阅读 下载PDF
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
13
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
在线阅读 下载PDF
Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel
14
作者 Qiliang Li Yuqing Sun +1 位作者 Menghan Ouyang Zhigang Yang 《Railway Engineering Science》 EI 2024年第3期401-420,共20页
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer... Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number. 展开更多
关键词 flow and sound fields Scaled high-speed trains Different coach numbers Long tunnel Proper orthogonal decomposition
在线阅读 下载PDF
Impact of well placement and flow rate on production efficiency and stress field in the fractured geothermal reservoirs
15
作者 Xinghui Wu Meifeng Cai +3 位作者 Xu Wu Ketong Zhang Ziqing Yin Yu Zhu 《Deep Underground Science and Engineering》 2024年第3期358-368,共11页
Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac... Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system. 展开更多
关键词 geothermal exploitation performance geothermal reservoir mass flow rate stress field well placementa
在线阅读 下载PDF
Study on a High Precision Inter-stage Flow Field Test System for Axial Compressors
16
作者 Yi-tong Liu Wu-qi Gong +1 位作者 Ya Li Yi-tian Wang 《风机技术》 2024年第6期85-96,共12页
The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which ma... The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which mainly consists of a probe motion scanning mechanism,fully automated test control software,and data processing methods.Iterative correction is applied to the original readings obtained from the scanning tests to enhance testing accuracy.Using this test system,detailed tests are conducted on a 1.5-stage subsonic axial compressor under different operating conditions.The test results effectively captured the impact of surface roughness and tip clearance variations on compressor performance.The distribution characteristics of parameters measured in inter-stage sections can characterize the effects of blade wake area and changes in aerodynamic performance at different blade heights.The developed test system can be extended to multi-stage compressors. 展开更多
关键词 Axial Compressor Test Method CALIBRATION Pneumatic Probe flow field
在线阅读 下载PDF
基于XFlow的仿蝴蝶气动特性
17
作者 饶小龙 来永斌 王龙 《科学技术与工程》 北大核心 2025年第9期3680-3686,共7页
为了研究非定常飞行参数对仿蝴蝶气动特性的影响问题,以黑框蓝闪蝶作为研究对象,通过建立飞行动力学模型;依据飞行原理建立蝴蝶飞行时翅膀、躯干、地面的相对坐标,构建飞行过程中蝴蝶翅膀和躯干的运动学方程。结合蝴蝶飞行原理验证仿蝴... 为了研究非定常飞行参数对仿蝴蝶气动特性的影响问题,以黑框蓝闪蝶作为研究对象,通过建立飞行动力学模型;依据飞行原理建立蝴蝶飞行时翅膀、躯干、地面的相对坐标,构建飞行过程中蝴蝶翅膀和躯干的运动学方程。结合蝴蝶飞行原理验证仿蝴蝶气动特性,并在自然环境流场条件下研究仿蝴蝶扑动角和俯仰角改变对升力和阻力的影响,分析其飞行流场。结果表明:翻转角与升力之间存在正相关,与阻力无关;扑动角小于120°时与升力呈正相关,大于120°与升力呈负相关,扑动角与阻力呈负相关;下扑时翅膀前缘开始产生高压区,上扑时翅膀边缘开始产生高压区。研究结果为仿蝴蝶扑翼飞行器设计提供了控制参数和翅膀设计参考,为进一步优化仿生扑翼飞行提供科学依据。 展开更多
关键词 仿生扑翼 飞行参数 Xflow 流场模拟 气动力分析
在线阅读 下载PDF
THE THREE-DIMENSIONAL FUNDAMENTAL SOLUTION TO STOKES FLOW IN THE OBLATE SPHEROIDAL COORDINATES WITH APPLICATIONS TO MULTIPLES SPHEROID PROBLEMS
18
作者 庄宏 严宗毅 吴望一 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第5期514-534,共21页
A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fu... A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fundamental solutions are advantageous in treating flows past an arbitrary number of arbitrarily positioned and oriented oblate spheroids. The least squares technique was adopted herein so that the convergence difficulties often encountered in solving three-dimensional problems were completely avoided. The examples demonstrate that present approach is highly accurate, consistently stable and computationally efficient. The oblate spheroid may be used to model a variety of particle shapes between a circular disk and a sphere. For the first time, the effect of various geometric factors on the forces and torques exerted on two oblate spheroids were systematically studied by using the proposed fundamental solutions. The generality of this approach was illustrated by two problems of three spheroids. 展开更多
关键词 Stokes flow fundamental solution three-dimension oblate spheroid multipole collocation least squares method low Reynolds number multiple particles
在线阅读 下载PDF
Numerical and experimental studies of flow field in hydrocyclone with air core 被引量:12
19
作者 崔宝玉 魏德洲 +2 位作者 高淑玲 刘文刚 Yu-qing FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2642-2649,共8页
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res... For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities. 展开更多
关键词 HYDROCYCLONE computational fluid dynamics particle image velocimetry flow field air core
在线阅读 下载PDF
PIV MEASUREMENT FOR SWIRLER FLOW FIELD IN GAS TURBINE COMBUSTOR 被引量:9
20
作者 颜应文 李井华 +3 位作者 徐榕 邓远灏 徐华胜 钟世林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期307-317,共11页
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo... The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor. 展开更多
关键词 swirler flow field gas turbine combustor particle image velocimetry primary recirculation zone length
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部