In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 4...In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 400-850℃. Both in-phase and out-of-phase TMF specimens exhibited cyclic hardening followed by cyclic softening at the minimum temperature. Besides, they cyclically hardened in the early stage of life followed by cyclic softening at the maximum temperature. OP TMF life was longer than that of IP TMF. Various damage mechanisms operating in different controlled strain ranges and phasing were discussed. A few life prediction methods for isothermal fatigue were used to handle TMF fatigue and their applicability to superalloy K417 was evaluated. The SEM analysis of the fracture surface showed that transgranular fracture was the principal cracking mode for both IP and OP TMF. Oxidation was the main damage mechanism in causing shorter fatigue life for IP TMF compared with OP TMF.展开更多
Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assess...Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van’t Hoff’s formula and artificial aging at 70℃ up to120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry(DSC) and thermal activity monitoring(TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents. This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.展开更多
Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammo...Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammonium perchlorate/Aluminum), and energetic nitramines(HMX) offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80℃ for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOxgases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with(AP/Al)-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the autocatalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm^3/5 g and 2.5 cm^3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance,chemical stability, and service life.展开更多
In recent years elastic-plastic fracture mechanics has developed rapidly and is widely used to solve various engineering problems. The application of elastic-plastic fracture mechanics on the pallet of sintering machi...In recent years elastic-plastic fracture mechanics has developed rapidly and is widely used to solve various engineering problems. The application of elastic-plastic fracture mechanics on the pallet of sintering machine is approached in detail for the first time in the present study. The theoretical results were compared with the actual data determined from sintering machine pallet. Results show that good agreement was achieved between the method suggested by the author and the actual data. The basis of determining design of the sintering machine pallet in iron and steel engineering has been provided and it will result in great economic benefits.展开更多
The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plas...The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25mm×0.35mm, the stand-off of 0.02mm and the solder volume of 0.026mm^3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5mm pitch QFP.展开更多
The paper calculated the temperature and stress fields of 1000 MW ultra-supercritical steam turbine rotors which start in cold condition using the finite element calculation program (ANSYS). After getting rotor stress...The paper calculated the temperature and stress fields of 1000 MW ultra-supercritical steam turbine rotors which start in cold condition using the finite element calculation program (ANSYS). After getting rotor stress field, the paper use the general slope method to estimate the low cycle fatigue life loss, the rest of the conditions can be calculated in this method.展开更多
A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load.The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,an...A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load.The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,and the results show that the bending strength and fracture toughness of cemented carbide material decrease obviously under cyclic thermal load,while in the cooling process,the material mechanical property changes worse suddenly.The high-temperature mechanical property of SCS is the most stable,and that of YT15 is the worst.Further,a relation model among cutting temperature,cutting parameters and insert life is established.Finally,the measures to improve heavy cemented carbide inserts life are summarized from the aspects of cutting parameters selection,insert optimization design and TiCN,Al2O3,TiN complex insert coating.The research results are expected to provide support and reference for heavy cutting technology and insert technology.展开更多
The life of shipboard cables will decrease due to the complex aging processes. In terms of the safety perspective, remaining life prediction of the cable is essential to maintain a reliable operation. In this paper, f...The life of shipboard cables will decrease due to the complex aging processes. In terms of the safety perspective, remaining life prediction of the cable is essential to maintain a reliable operation. In this paper, firstly, based on Arrhenius equation, residual life of new styrene-butadiene cable is calculated; result indicates that the degradation rate which changes with time is proportional to thermal temperature. Then second order dynamic model is adopted into the residual life prediction, combined with the time-temperature superposition method(TTSP), and a new residual life model is proposed. According to the accelerated thermal aging experiment data and Arrhenius equation, TTSP method demonstrates to be an efficient way for life prediction, and life at normal temperature can be estimated by this model. In order to monitor the state of styrene-butadiene cable more accurately, an improved residual life model based on equivalent environment temperature of cable is proposed, and life of cable under real operation is analyzed. Result indicates that this model is credible and reliable, and it provides an important theoretical base for residual life of cables.展开更多
All over the world,the management of End-of-life Vehicles(ELV) and Automobile Shredder Residue(ASR) is an increasing issue for the car industry.The setting up of several environmental directives,among others the notio...All over the world,the management of End-of-life Vehicles(ELV) and Automobile Shredder Residue(ASR) is an increasing issue for the car industry.The setting up of several environmental directives,among others the notion of extended producer responsibility,encourage car manufacturers to find alternatives solutions to waste disposal.For 2017,China aims for the recyclability and energy recovery of 95% of total weight of used cars,and in order to reach this rate,the development of some ASR thermal processes could be envisaged.With this research,an overview of ELV management was given and the different solutions about ASR thermal treatment were presented.It is showed that in spite of its big heterogeneity,the high heating value of ASR makes pyrolysis and gasification very interesting,compared to incineration or disposal of in landfills.展开更多
Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the producti...Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions.展开更多
A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
文摘In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) behavior of cast Ni-base superalloy K417 was studied. All experiments were carried out under total strain control with temperature cycling between 400-850℃. Both in-phase and out-of-phase TMF specimens exhibited cyclic hardening followed by cyclic softening at the minimum temperature. Besides, they cyclically hardened in the early stage of life followed by cyclic softening at the maximum temperature. OP TMF life was longer than that of IP TMF. Various damage mechanisms operating in different controlled strain ranges and phasing were discussed. A few life prediction methods for isothermal fatigue were used to handle TMF fatigue and their applicability to superalloy K417 was evaluated. The SEM analysis of the fracture surface showed that transgranular fracture was the principal cracking mode for both IP and OP TMF. Oxidation was the main damage mechanism in causing shorter fatigue life for IP TMF compared with OP TMF.
文摘Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van’t Hoff’s formula and artificial aging at 70℃ up to120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry(DSC) and thermal activity monitoring(TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents. This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.
文摘Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammonium perchlorate/Aluminum), and energetic nitramines(HMX) offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80℃ for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOxgases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with(AP/Al)-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the autocatalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm^3/5 g and 2.5 cm^3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance,chemical stability, and service life.
文摘In recent years elastic-plastic fracture mechanics has developed rapidly and is widely used to solve various engineering problems. The application of elastic-plastic fracture mechanics on the pallet of sintering machine is approached in detail for the first time in the present study. The theoretical results were compared with the actual data determined from sintering machine pallet. Results show that good agreement was achieved between the method suggested by the author and the actual data. The basis of determining design of the sintering machine pallet in iron and steel engineering has been provided and it will result in great economic benefits.
基金Project(02336060) supported by the Natural Science Foundation of Guangxi Province , China
文摘The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25mm×0.35mm, the stand-off of 0.02mm and the solder volume of 0.026mm^3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5mm pitch QFP.
文摘The paper calculated the temperature and stress fields of 1000 MW ultra-supercritical steam turbine rotors which start in cold condition using the finite element calculation program (ANSYS). After getting rotor stress field, the paper use the general slope method to estimate the low cycle fatigue life loss, the rest of the conditions can be calculated in this method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51205095)Support Program for Key Youth(Grant No.1154G39)
文摘A large amount of cutting heat is produced during the heavy cutting process,and insert life is restricted by the effect of thermal load.The thermal load experiment of cemented carbide SCS,WF and YT15 is carried out,and the results show that the bending strength and fracture toughness of cemented carbide material decrease obviously under cyclic thermal load,while in the cooling process,the material mechanical property changes worse suddenly.The high-temperature mechanical property of SCS is the most stable,and that of YT15 is the worst.Further,a relation model among cutting temperature,cutting parameters and insert life is established.Finally,the measures to improve heavy cemented carbide inserts life are summarized from the aspects of cutting parameters selection,insert optimization design and TiCN,Al2O3,TiN complex insert coating.The research results are expected to provide support and reference for heavy cutting technology and insert technology.
文摘The life of shipboard cables will decrease due to the complex aging processes. In terms of the safety perspective, remaining life prediction of the cable is essential to maintain a reliable operation. In this paper, firstly, based on Arrhenius equation, residual life of new styrene-butadiene cable is calculated; result indicates that the degradation rate which changes with time is proportional to thermal temperature. Then second order dynamic model is adopted into the residual life prediction, combined with the time-temperature superposition method(TTSP), and a new residual life model is proposed. According to the accelerated thermal aging experiment data and Arrhenius equation, TTSP method demonstrates to be an efficient way for life prediction, and life at normal temperature can be estimated by this model. In order to monitor the state of styrene-butadiene cable more accurately, an improved residual life model based on equivalent environment temperature of cable is proposed, and life of cable under real operation is analyzed. Result indicates that this model is credible and reliable, and it provides an important theoretical base for residual life of cables.
文摘All over the world,the management of End-of-life Vehicles(ELV) and Automobile Shredder Residue(ASR) is an increasing issue for the car industry.The setting up of several environmental directives,among others the notion of extended producer responsibility,encourage car manufacturers to find alternatives solutions to waste disposal.For 2017,China aims for the recyclability and energy recovery of 95% of total weight of used cars,and in order to reach this rate,the development of some ASR thermal processes could be envisaged.With this research,an overview of ELV management was given and the different solutions about ASR thermal treatment were presented.It is showed that in spite of its big heterogeneity,the high heating value of ASR makes pyrolysis and gasification very interesting,compared to incineration or disposal of in landfills.
文摘Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions.
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.