The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto...The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.展开更多
BACKGROUND Thyrotoxic periodic paralysis(TPP)is an endocrine emergency caused by thyrotoxicosis,manifesting mainly as periodic myasthenia and hypokalemia,and posing a serious threat to the patient's health.Fatigue...BACKGROUND Thyrotoxic periodic paralysis(TPP)is an endocrine emergency caused by thyrotoxicosis,manifesting mainly as periodic myasthenia and hypokalemia,and posing a serious threat to the patient's health.Fatigue,strenuous exercise,alcohol abuse,high carbohydrate intake and insulin injections are common triggers of paralysis.This article reports a case of severe TPP induced by insulin injection,elucidates the characteristics and pathogenesis of the disease,analyses the risk factors for triggering TPP,and hopefully provides more clinical data for TPP patients.CASE SUMMARY A 38-year-old Asian man presented to the emergency department with a oneweek history of limb weakness and worsening half-day.His medical history included poorly controlled type 2 diabetes and he had been switched to Aspart50 a week earlier.He was alert and oriented with upper extremity strength grade 3 and lower extremity strength grade 1.Emergency department tests showed hypokalemia of 1.6 mmol/L.The paramedics administered 1.5 g of potassium intravenously,followed by 4.0 g orally.Weakness in the arms and legs improved.He was referred to endocrinology where he was diagnosed with Graves'disease,with suboptimal control and insulin injections possibly causing TPP.We stopped his insulin and he was discharged with a potassium level of 4.0 mmol/L.CONCLUSION Insulin is a trigger for TPP and should be avoided in patients with hyperthyroidism.Early recognition and treatment of TPP is crucial,especially in patients presenting with hypokalemic periodic paralysis.展开更多
Significant wave period is an important parameter in coastal and offshore engineering design.Traditional spectral wave models do not directly calculate this parameter,which means that it needs to be estimated from the...Significant wave period is an important parameter in coastal and offshore engineering design.Traditional spectral wave models do not directly calculate this parameter,which means that it needs to be estimated from the spectral periods using empirical formulas.The wave energy period is one of the wave periods directly output by many wave models and is often used in studies of wave energy.This study investigated the relationship between significant wave period and wave energy period using wave data measured at three stations in the coastal waters of China.The observations recorded at these stations in the South China Sea,the East China Sea,and the Bohai Sea covered a wide range of surface wave conditions.Analysis indicated that the ratio of significant wave period to wave energy period is closely related to the Goda peakedness parameter of the wave spectra.Therefore,we proposed an empirical formula in which significant wave period is a function of wave energy period and the Goda peakedness parameter.Evaluation results showed that the performance of this formula is substantially better than that of fitting formulas that use constant coefficients.展开更多
The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zen...The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zener model with periodic modulation.We obtain adiabatic phase diagrams in the(ω,δ)parameter space,where the adiabatic region is bounded by the modulating frequencyωgreater than a critical valueω_(c) and the non-reciprocal parameterδless than one.The results show that the adiabaticity of the system is not sensitive to the modulating amplitude.We find that the critical modulating frequency can be expressed as a power function of the modulating period number or the sweeping rate.Our findings suggest that one can change the adiabatic region or improve the adiabaticity by adjusting the parameters of both the modulating and the sweeping fields,which provides an effective means to flexibly control the adiabatic dynamics of non-reciprocal systems.展开更多
The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits ...The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion or growth.In this study,a double gyroid(DG)Ti6Al4V scaffold based on a triply periodic minimal surface(TPMS)structure was devised,and the osseointegration performance of DG structural scaffolds with varying porosities was investigated.Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants.In vitro cellular experiments demonstrated that the DG structure significantly enhanced cell proliferation,vascularization,and osteogenic differentiation compared to the cubic structure.The DG structure with 55%porosity exhibited the most favorable outcomes.In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation;those with 55%porosity performed best.Comparing the surface area,specific surface area per unit volume,and internal flow distribution characteristics of gyroid and DG structure scaffolds,the latter are more conducive to cell adhesion and growth within scaffolds.This study underscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaffolds,inducing angiogenesis,and advancing the clinical application of titanium scaffolds for repairing bone defects.展开更多
The honey badger algorithm(HBA),as a new swarm intelligence(SI)optimization algorithm,has shown certain effectiveness in its applications.Aiming at the problems of unsatisfactory initial population distribution of HBA...The honey badger algorithm(HBA),as a new swarm intelligence(SI)optimization algorithm,has shown certain effectiveness in its applications.Aiming at the problems of unsatisfactory initial population distribution of HBA,poor ability to avoid local optimum,and slow convergence speed,this paper proposes a multi-strategy improved HBA based on periodical mutation and t-distribution perturbation,called MHBA.Firstly,a good point set population initialization is introduced to get a uniform initial population.Secondly,periodic mutation and t-distribution perturbation are successively used to improve the algorithm’s ability to avoid local optimum.Finally,the density factor is improved for balancing exploration and exploitation.By comparing MHBA with HBA and 7 other SIs on 6 benchmark functions,it is evident that the performance of MHBA is far superior to HBA.In addition,by applying MHBA to robot path planning,MHBA can identify the shortest path more quickly and consistently compared with competitors.展开更多
To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy stora...To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.展开更多
In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρ...In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.展开更多
Bulk Acoustic Wave(BAW)filters find applications in radio frequency(RF)communication systems for Wi-Fi,3G,4G,and 5G networks.In the beyond-5G(potential 6G)era,high-frequency bands(>8 GHz)are expected to require res...Bulk Acoustic Wave(BAW)filters find applications in radio frequency(RF)communication systems for Wi-Fi,3G,4G,and 5G networks.In the beyond-5G(potential 6G)era,high-frequency bands(>8 GHz)are expected to require resonators with high-quality factor(Q)and electromechanical coupling(k_(t)^(2))to form filters with low insertion loss and high selectivity.However,both the Q and k_(t)^(2)of resonator devices formed in traditional uniform polarization piezoelectric films of aluminum nitride(AlN)and aluminum scandium nitride(AlScN)decrease when scaled beyond 8 GHz.In this work,we utilized 4-layer AlScN periodically poled piezoelectric films(P3F)to construct high-frequency(~17–18 GHz)resonators and filters.The resonator performance is studied over a range of device geometries,with the best resonator achieving a k_(t)^(2)of 11.8%and a Qp of 236.6 at the parallel resonance frequency(f_(p))of 17.9 GHz.These resulting figures-of-merit are(FoM_(1)=k_(t)^(2)Qp and FoM_(2)=f_(p)FoM_(1)×10^(-9))27.9 and 500,respectively.These and the k_(t)^(2)are significantly higher than previously reported AlN/AlScN-based resonators operating at similar frequencies.Fabricated 3-element and 6-element filters formed from these resonators demonstrated low insertion losses(IL)of 1.86 and 3.25 dB,and−3 dB bandwidths(BW)of 680 MHz(fractional BW of 3.9%)and 590 MHz(fractional BW of 3.3%)at a~17.4 GHz center frequency.The 3-element and 6-element filters achieved excellent linearity with in-band input third-order intercept point(IIP3)values of+36 and+40 dBm,respectively,which are significantly higher than previously reported acoustic filters operating at similar frequencies.展开更多
The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction b...The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.展开更多
Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fer...Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in...Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b^(+)macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b^(+)macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b^(+)macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b^(+)macrophages was significantly upregulated compared to CD301b^(-) macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b^(+)macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b^(+)macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b^(+)macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b^(+)macrophages phenotype.In a word,Tim4 might regulate CD301b^(+)macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.展开更多
Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)top...Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.展开更多
The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wave...The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations.展开更多
基金Supported by the National Natural Science Foundation of China(10671182)。
文摘The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.
文摘BACKGROUND Thyrotoxic periodic paralysis(TPP)is an endocrine emergency caused by thyrotoxicosis,manifesting mainly as periodic myasthenia and hypokalemia,and posing a serious threat to the patient's health.Fatigue,strenuous exercise,alcohol abuse,high carbohydrate intake and insulin injections are common triggers of paralysis.This article reports a case of severe TPP induced by insulin injection,elucidates the characteristics and pathogenesis of the disease,analyses the risk factors for triggering TPP,and hopefully provides more clinical data for TPP patients.CASE SUMMARY A 38-year-old Asian man presented to the emergency department with a oneweek history of limb weakness and worsening half-day.His medical history included poorly controlled type 2 diabetes and he had been switched to Aspart50 a week earlier.He was alert and oriented with upper extremity strength grade 3 and lower extremity strength grade 1.Emergency department tests showed hypokalemia of 1.6 mmol/L.The paramedics administered 1.5 g of potassium intravenously,followed by 4.0 g orally.Weakness in the arms and legs improved.He was referred to endocrinology where he was diagnosed with Graves'disease,with suboptimal control and insulin injections possibly causing TPP.We stopped his insulin and he was discharged with a potassium level of 4.0 mmol/L.CONCLUSION Insulin is a trigger for TPP and should be avoided in patients with hyperthyroidism.Early recognition and treatment of TPP is crucial,especially in patients presenting with hypokalemic periodic paralysis.
基金The National Natural Science Foundation of China under contract No.41821004the Basic Scientific Fund for National Public Research Institutes of China under contract No.2020Q08the Fund of Laoshan Laboratory under contract No.LSKJ202201600.
文摘Significant wave period is an important parameter in coastal and offshore engineering design.Traditional spectral wave models do not directly calculate this parameter,which means that it needs to be estimated from the spectral periods using empirical formulas.The wave energy period is one of the wave periods directly output by many wave models and is often used in studies of wave energy.This study investigated the relationship between significant wave period and wave energy period using wave data measured at three stations in the coastal waters of China.The observations recorded at these stations in the South China Sea,the East China Sea,and the Bohai Sea covered a wide range of surface wave conditions.Analysis indicated that the ratio of significant wave period to wave energy period is closely related to the Goda peakedness parameter of the wave spectra.Therefore,we proposed an empirical formula in which significant wave period is a function of wave energy period and the Goda peakedness parameter.Evaluation results showed that the performance of this formula is substantially better than that of fitting formulas that use constant coefficients.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12375019 and 11974273)。
文摘The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zener model with periodic modulation.We obtain adiabatic phase diagrams in the(ω,δ)parameter space,where the adiabatic region is bounded by the modulating frequencyωgreater than a critical valueω_(c) and the non-reciprocal parameterδless than one.The results show that the adiabaticity of the system is not sensitive to the modulating amplitude.We find that the critical modulating frequency can be expressed as a power function of the modulating period number or the sweeping rate.Our findings suggest that one can change the adiabatic region or improve the adiabaticity by adjusting the parameters of both the modulating and the sweeping fields,which provides an effective means to flexibly control the adiabatic dynamics of non-reciprocal systems.
基金supported bythe National Natural Science Foundation of China(Nos.U23A20523,82272504,and 82072456)the Department of Science and Technology of Jilin Province,China(Nos.20210101439JC,20210101321JC,20220204119YY,202201ZYTS131,202201ZYTS129,20230204114YY,YDZJ202201ZYTS505,and YDZJ202301ZYTS076)+4 种基金the Special Program for Science and Technology Personnel of Changchun(No.ZKICKJJ2023015)the Key Training Plan for Outstanding Youth of Jilin University(No.419070623036)the Research Fund of the First Hospital of Jilin University(No.2021-zl-01)the Graduate Innovation Fund of Jilin University(No.2024CX125)the Foun-dation of National Center for Translational Medicine(Shanghai)SHU Branch,China(No.SUITM-202405).
文摘The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion or growth.In this study,a double gyroid(DG)Ti6Al4V scaffold based on a triply periodic minimal surface(TPMS)structure was devised,and the osseointegration performance of DG structural scaffolds with varying porosities was investigated.Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants.In vitro cellular experiments demonstrated that the DG structure significantly enhanced cell proliferation,vascularization,and osteogenic differentiation compared to the cubic structure.The DG structure with 55%porosity exhibited the most favorable outcomes.In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation;those with 55%porosity performed best.Comparing the surface area,specific surface area per unit volume,and internal flow distribution characteristics of gyroid and DG structure scaffolds,the latter are more conducive to cell adhesion and growth within scaffolds.This study underscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaffolds,inducing angiogenesis,and advancing the clinical application of titanium scaffolds for repairing bone defects.
基金Supported by the National Key Research and Development Program of China(No.2022ZD0119001)。
文摘The honey badger algorithm(HBA),as a new swarm intelligence(SI)optimization algorithm,has shown certain effectiveness in its applications.Aiming at the problems of unsatisfactory initial population distribution of HBA,poor ability to avoid local optimum,and slow convergence speed,this paper proposes a multi-strategy improved HBA based on periodical mutation and t-distribution perturbation,called MHBA.Firstly,a good point set population initialization is introduced to get a uniform initial population.Secondly,periodic mutation and t-distribution perturbation are successively used to improve the algorithm’s ability to avoid local optimum.Finally,the density factor is improved for balancing exploration and exploitation.By comparing MHBA with HBA and 7 other SIs on 6 benchmark functions,it is evident that the performance of MHBA is far superior to HBA.In addition,by applying MHBA to robot path planning,MHBA can identify the shortest path more quickly and consistently compared with competitors.
基金This study was supported by State Grid Corporation headquarters technology project(4000-202399368A-2-2-ZB).
文摘To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.
基金supported by the Technological Innovation Talents in Universities and Colleges in Henan Province(No.21HASTIT025)the Natural Science Foundation of Henan Province(No.222300420449)the Innovative Research Team of Henan Polytechnic University(No.T2022-7)。
文摘In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.
文摘Bulk Acoustic Wave(BAW)filters find applications in radio frequency(RF)communication systems for Wi-Fi,3G,4G,and 5G networks.In the beyond-5G(potential 6G)era,high-frequency bands(>8 GHz)are expected to require resonators with high-quality factor(Q)and electromechanical coupling(k_(t)^(2))to form filters with low insertion loss and high selectivity.However,both the Q and k_(t)^(2)of resonator devices formed in traditional uniform polarization piezoelectric films of aluminum nitride(AlN)and aluminum scandium nitride(AlScN)decrease when scaled beyond 8 GHz.In this work,we utilized 4-layer AlScN periodically poled piezoelectric films(P3F)to construct high-frequency(~17–18 GHz)resonators and filters.The resonator performance is studied over a range of device geometries,with the best resonator achieving a k_(t)^(2)of 11.8%and a Qp of 236.6 at the parallel resonance frequency(f_(p))of 17.9 GHz.These resulting figures-of-merit are(FoM_(1)=k_(t)^(2)Qp and FoM_(2)=f_(p)FoM_(1)×10^(-9))27.9 and 500,respectively.These and the k_(t)^(2)are significantly higher than previously reported AlN/AlScN-based resonators operating at similar frequencies.Fabricated 3-element and 6-element filters formed from these resonators demonstrated low insertion losses(IL)of 1.86 and 3.25 dB,and−3 dB bandwidths(BW)of 680 MHz(fractional BW of 3.9%)and 590 MHz(fractional BW of 3.3%)at a~17.4 GHz center frequency.The 3-element and 6-element filters achieved excellent linearity with in-band input third-order intercept point(IIP3)values of+36 and+40 dBm,respectively,which are significantly higher than previously reported acoustic filters operating at similar frequencies.
基金supported in part by the Japan Agency for Medical Research and Development (AMED) under grant number JP20ek0410073, JP23ek0410108, JP22ek0410100, AMEDCREST under grant number JP19gm1210008 and AMED-PRIME under grant number JP21gm6310029, the AMED Japan Initiative for World leading Vaccine Research and Development Centers (JP223fa627001)Japan Society for the Promotion of Science (JSPS): Scientific Research S (21H05046), Scientific Research B (21H03104, 22H03195, and 22H02844) and Challenging Research (20K21515 and 21K18254)+3 种基金the JST FOREST Program (JPMJFR2261, JPMJFR205Z)Y.A. was supported by a JSPS Research Fellowship for Young Scientists (23KJ1949)Japanese Society for Immunology (JSI)Kibou Scholarship for Doctoral Students in Immunology。
文摘The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.
基金funded by National Key R&D Program of China(2022YFA1304204)Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-FRI-04)Beijing Innovation Consortium of livestock Research System(BAIC05-2023)。
文摘Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
基金supported by the National Natural Science Foundation of China(82025011,82220108018,82270981,82100975,82201078)the National Key R&D Program of China(2021YFC2400405)+1 种基金the Fundamental Research Funds for the Central Universities(2042023kfyq022042022dx0003).
文摘Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b^(+)macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b^(+)macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b^(+)macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b^(+)macrophages was significantly upregulated compared to CD301b^(-) macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b^(+)macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b^(+)macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b^(+)macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b^(+)macrophages phenotype.In a word,Tim4 might regulate CD301b^(+)macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074107 and 12304195)the Program of Outstanding Young and Middle-Aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(Grant No.T2020001)+2 种基金the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2022CFA012)the Chutian Scholars Program in Hubei Province,the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230751)the Postdoctoral Innovation Research Program in Hubei Province(Grant No.351342)。
文摘Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261131495 and 12475008)the Scientific Research and Developed Fund of Zhejiang A&F University(Grant No.2021FR0009).
文摘The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations.