期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
ON THE EXISTENCE OF POSITIVE SOLUTIONS TO SECOND ORDER PERIODIC BVPS 被引量:28
1
作者 蒋达清 《Acta Mathematica Scientia》 SCIE CSCD 1998年第S1期31-35,共5页
The existence of positive solutions to second-order periodic BVPs-u'+Mu =j(t, u),t(0) = u(2π),u'(0) = '(2π) and u'+ Mu = I(t, u), u(0) = u(2π), u'(0) = u'(2π)is proved by a simple appliCati... The existence of positive solutions to second-order periodic BVPs-u'+Mu =j(t, u),t(0) = u(2π),u'(0) = '(2π) and u'+ Mu = I(t, u), u(0) = u(2π), u'(0) = u'(2π)is proved by a simple appliCation of a Fixed point Theorem in cones due to Krasnoselskii. 展开更多
关键词 Periodic BVP. positive solutions. the fixed point theorem
在线阅读 下载PDF
MULTIPLE POSITIVE SOLUTIONS TO SINGULAR BOUNDARY VALUE PROBLEMS FOR SUPERLINEAR SECOND ORDER ODES 被引量:12
2
作者 蒋达清 《Acta Mathematica Scientia》 SCIE CSCD 2002年第2期199-206,共8页
This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
关键词 Singular boundary value problem existence SUPERLINEAR the fixed point theorem
在线阅读 下载PDF
THE EXISTENCE OF POSITIVE SOLUTIONS OF THE NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS IN A BANACH SPACE
3
作者 韦忠礼 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1999年第1期94-97,共4页
In this paper, the author obtains the existence of positive solutions of nonlinear neutral differential difference equations in a Banach space by means of the fixed point theorems.
关键词 Positive solution neutral differential difference equation the fixed point theorem
全文增补中
Existence of Positive Solutions to Second Order Neumann Boundary Value Problems 被引量:31
4
作者 蒋达清 刘辉昭 《Journal of Mathematical Research and Exposition》 CSCD 2000年第3期360-364,共5页
The existence of positive solutions to second-order Neumann BVPs -u' + Mu = f(t, u), u'(0) = u'(1) = 0 and u' + Mu = f(t, u), u'(0) =u'(1) is proved by a simple application of a Fixed Poin... The existence of positive solutions to second-order Neumann BVPs -u' + Mu = f(t, u), u'(0) = u'(1) = 0 and u' + Mu = f(t, u), u'(0) =u'(1) is proved by a simple application of a Fixed Point Theorem in cones due to Krasnoselskii[1,6]. 展开更多
关键词 Neumann BVP positive solutions the fixed point theorem.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部