Let F be a field and char F = p > 3. In this paper the derivation algebras of Lie superalgebras W and S of Cartan-type over F are determined by the calculating method.
Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
In this paper, the derivation algebra of Lie superalgebra H of Caftan-type over F are determined by the calculating method in the situations of CharF = p ≥ 3 or m ≥ 2 or n ≥ 1. The main result is following: DerFH ...In this paper, the derivation algebra of Lie superalgebra H of Caftan-type over F are determined by the calculating method in the situations of CharF = p ≥ 3 or m ≥ 2 or n ≥ 1. The main result is following: DerFH = adH(H" + Fh) ({(adDi)^pt | i = 1,2,…,m, t=1,2,…,ti-1}).展开更多
In this article,the authors obtain some results concerning derivations of finitely generated Lie color algebras and discuss the relation between skew derivation space SkDer(L)and central extension H^2(L,F)on some ...In this article,the authors obtain some results concerning derivations of finitely generated Lie color algebras and discuss the relation between skew derivation space SkDer(L)and central extension H^2(L,F)on some Lie color algebras.Meanwhile,they generalize the notion of double extension to quadratic Lie color algebras,a sufficient condition for a quadratic Lie color algebra to be a double extension and further properties are given.展开更多
Let Mn be the algebra of all n × n complex matrices and gl(n, C) be the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n, C) → gl(n, C) preserves solvability in both directions...Let Mn be the algebra of all n × n complex matrices and gl(n, C) be the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n, C) → gl(n, C) preserves solvability in both directions if both φ and φ-1 map every solvable Lie subalgebra of gl(n, C) to some solvable Lie subalgebra. In this paper we classify the invertible linear maps preserving solvability on gl(n, C) in both directions. As a sequence, such maps coincide with the invertible linear maps preserving commutativity on Mn in both directions.展开更多
In this paper we explicitly determine the derivation algebra of a quasi Rn-filiform Lie algebra and prove that a quasi Rn-filiform Lie algebra is a completable nilpotent Lie algebra.
In this paper the derivation algebra of Lie algebra Σof characteristic two is determined. Using this result we obtain the necessary and sufficient condition under that Σ of characteristic two is the restreted Lie al...In this paper the derivation algebra of Lie algebra Σof characteristic two is determined. Using this result we obtain the necessary and sufficient condition under that Σ of characteristic two is the restreted Lie algebra. Finally we prove that Σ of characteristic two isn't isomorphic the Lie algebras of characteristic two which are known by authors of this paper. But it still is a filtered deformation of the Lie algebra of H-type i.e. Its associated grated algebra GrΣ is isomorphic to H(2n + 2.r).展开更多
Let g be a complex simple Lie algebra of rank ι, b the standard Borel subalgebra. An invertible map on Ь is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension. In ...Let g be a complex simple Lie algebra of rank ι, b the standard Borel subalgebra. An invertible map on Ь is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension. In this article, by using some results of Chevalley groups, the theory of root systems and root space decomposition, the author gives an explicit description on such maps of Ь.展开更多
In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solva...In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solvable Lie algebras with filiform Rn nilradicals is complete.展开更多
Let N be a nest on a Banach space X, and Alg N be the associated nest algebra. It is shown that if there exists a non-trivial element in N which is complemented in X, then D = (Ln)n∈N is a Lie higher derivation of ...Let N be a nest on a Banach space X, and Alg N be the associated nest algebra. It is shown that if there exists a non-trivial element in N which is complemented in X, then D = (Ln)n∈N is a Lie higher derivation of AlgAl if and only if each Ln has the form Ln(A) : Tn(A) + hn(A)I for all A ∈ AlgN, where (Tn)n∈N is a higher derivation and (hn)n∈N is a sequence of additive functionals satisfying hn([A,B]) = 0 for all A,B ∈ AlgN and all n ∈ N.展开更多
A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed. Then an algorithm of 3D object recognition using the linear Lie algebra models is presented. It is a ...A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed. Then an algorithm of 3D object recognition using the linear Lie algebra models is presented. It is a convenient recognition method for the objects which are symmetric about some axis. By using the presented algorithm, the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained. At last some recognition results of practicalities are given.展开更多
We show that the non-linear semi-quantum Hamiltonians which may be expressed as(whereis the set of generators of some Lie algebra and are the classical conjugated canonical variables) always close a partial semi Lie a...We show that the non-linear semi-quantum Hamiltonians which may be expressed as(whereis the set of generators of some Lie algebra and are the classical conjugated canonical variables) always close a partial semi Lie algebra under commutation and, because of this, it is always possible to integrate the mean values of the quantum degrees of freedom of the semi-quantum non-linear system in the fashion:(whereis the Maximum Entropy Principle density operator) and, so, these kind of Hamiltonians always have associated dynamic invariants which are expressed in terms of the quantum degrees of freedom’s mean values. Those invariants are useful to characterize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by means of the initial conditions imposed on the semi-quantum non-linear system.展开更多
The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant s...The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given linear system. The result is then used to provide a comparable cascading form for switching models. Using the common cascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks. In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization for a class of switched linear systems is solved.展开更多
In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to inv...In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).展开更多
We prove that each finitely generated (as a module) complete color Lie superalgebras over noetherian ring can be decomposed uniquely into a direct sum of complete simple ideals.
Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if ...Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on g that preserve staircase subalgebras.展开更多
Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this pa...Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this paper, we first determine the intermediate algebras between h and b, then for such an intermediate algebra, we give an explicit description on its derivations, provided that R is a commutative ring with identity and 2 is invertible in R.展开更多
Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter instead of the Euler angles and ...Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter instead of the Euler angles and the vector parameter c of Fyodorov are developed. The one-dimensional root scheme of SU (2) is embedded in two-dimensional root schemes of some higher Lie groups, in particular, in inhomogeneous Lie groups and is represented in text and figures. The two-dimensional fundamental representation of SU (2) is calculated and from it the composition law for the product of two transformations and the most important decompositions of general transformations in special ones are derived. Then the transition from representation of SU (2) to of is made where in addition to the parametrization by vector the convenient parametrization by vector c is considered and the connections are established. The measures for invariant integration are derived for and for SU (2) . The relations between 3D-rotations of a unit sphere to fractional linear transformations of a plane by stereographic projection are discussed. All derivations and representations are tried to make in coordinate-invariant way.展开更多
文摘Let F be a field and char F = p > 3. In this paper the derivation algebras of Lie superalgebras W and S of Cartan-type over F are determined by the calculating method.
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.
基金Supported by the Natural Science Foundation of the Henan Institute of Science and Technology(06057)
文摘In this paper, the derivation algebra of Lie superalgebra H of Caftan-type over F are determined by the calculating method in the situations of CharF = p ≥ 3 or m ≥ 2 or n ≥ 1. The main result is following: DerFH = adH(H" + Fh) ({(adDi)^pt | i = 1,2,…,m, t=1,2,…,ti-1}).
基金National Natural Science Foundation of China(10271076)
文摘In this article,the authors obtain some results concerning derivations of finitely generated Lie color algebras and discuss the relation between skew derivation space SkDer(L)and central extension H^2(L,F)on some Lie color algebras.Meanwhile,they generalize the notion of double extension to quadratic Lie color algebras,a sufficient condition for a quadratic Lie color algebra to be a double extension and further properties are given.
基金The NSF (2009J05005) of Fujian Provincea Key Project of Fujian Provincial Universities-Information Technology Research Based on Mathematics
文摘Let Mn be the algebra of all n × n complex matrices and gl(n, C) be the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n, C) → gl(n, C) preserves solvability in both directions if both φ and φ-1 map every solvable Lie subalgebra of gl(n, C) to some solvable Lie subalgebra. In this paper we classify the invertible linear maps preserving solvability on gl(n, C) in both directions. As a sequence, such maps coincide with the invertible linear maps preserving commutativity on Mn in both directions.
文摘In this paper we explicitly determine the derivation algebra of a quasi Rn-filiform Lie algebra and prove that a quasi Rn-filiform Lie algebra is a completable nilpotent Lie algebra.
文摘In this paper the derivation algebra of Lie algebra Σof characteristic two is determined. Using this result we obtain the necessary and sufficient condition under that Σ of characteristic two is the restreted Lie algebra. Finally we prove that Σ of characteristic two isn't isomorphic the Lie algebras of characteristic two which are known by authors of this paper. But it still is a filtered deformation of the Lie algebra of H-type i.e. Its associated grated algebra GrΣ is isomorphic to H(2n + 2.r).
基金Supported by the Doctor Foundation of Henan Polytechnic University(B2010-93)Supported by the National Natural Science Foundation of China(11126121)+2 种基金Supported by the Natural Science Foundation of Henan Province(112300410120)Supported by the Natural Science Research Program of Education Department of Henan Province(201lB110016)Supported by the Applied Mathematics Provincial-level Key Discipline of Henan Province of Henau Polytechuic University
文摘Let g be a complex simple Lie algebra of rank ι, b the standard Borel subalgebra. An invertible map on Ь is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension. In this article, by using some results of Chevalley groups, the theory of root systems and root space decomposition, the author gives an explicit description on such maps of Ь.
文摘In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solvable Lie algebras with filiform Rn nilradicals is complete.
基金supported by NSF (10771157) of ChinaResearch Fund (2007-38) of Shanxi for Returned ScholarsFoundation of Shanxi University
文摘Let N be a nest on a Banach space X, and Alg N be the associated nest algebra. It is shown that if there exists a non-trivial element in N which is complemented in X, then D = (Ln)n∈N is a Lie higher derivation of AlgAl if and only if each Ln has the form Ln(A) : Tn(A) + hn(A)I for all A ∈ AlgN, where (Tn)n∈N is a higher derivation and (hn)n∈N is a sequence of additive functionals satisfying hn([A,B]) = 0 for all A,B ∈ AlgN and all n ∈ N.
基金Sponsored by the Ministry of Education Foundation of China(5220308)
文摘A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed. Then an algorithm of 3D object recognition using the linear Lie algebra models is presented. It is a convenient recognition method for the objects which are symmetric about some axis. By using the presented algorithm, the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained. At last some recognition results of practicalities are given.
文摘We show that the non-linear semi-quantum Hamiltonians which may be expressed as(whereis the set of generators of some Lie algebra and are the classical conjugated canonical variables) always close a partial semi Lie algebra under commutation and, because of this, it is always possible to integrate the mean values of the quantum degrees of freedom of the semi-quantum non-linear system in the fashion:(whereis the Maximum Entropy Principle density operator) and, so, these kind of Hamiltonians always have associated dynamic invariants which are expressed in terms of the quantum degrees of freedom’s mean values. Those invariants are useful to characterize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by means of the initial conditions imposed on the semi-quantum non-linear system.
基金Supported partly by National Natural Science Foundation of PRC (No. 60343001, 60274010, 66221301 and 60334040)
文摘The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given linear system. The result is then used to provide a comparable cascading form for switching models. Using the common cascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks. In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization for a class of switched linear systems is solved.
基金supported by the Daejin University grants in 2010
文摘In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).
文摘We prove that each finitely generated (as a module) complete color Lie superalgebras over noetherian ring can be decomposed uniquely into a direct sum of complete simple ideals.
基金The NSF (11126121) of ChinaPh.D.Fund (B2010-93) of Henan Polytechnic University+1 种基金Natural Science Research Program (112300410120) of Science and Technology Department of Henan ProvinceNatural Science Research Program (2011B110016) of Education Department of Henan Province
文摘Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on g that preserve staircase subalgebras.
文摘Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this paper, we first determine the intermediate algebras between h and b, then for such an intermediate algebra, we give an explicit description on its derivations, provided that R is a commutative ring with identity and 2 is invertible in R.
文摘Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter instead of the Euler angles and the vector parameter c of Fyodorov are developed. The one-dimensional root scheme of SU (2) is embedded in two-dimensional root schemes of some higher Lie groups, in particular, in inhomogeneous Lie groups and is represented in text and figures. The two-dimensional fundamental representation of SU (2) is calculated and from it the composition law for the product of two transformations and the most important decompositions of general transformations in special ones are derived. Then the transition from representation of SU (2) to of is made where in addition to the parametrization by vector the convenient parametrization by vector c is considered and the connections are established. The measures for invariant integration are derived for and for SU (2) . The relations between 3D-rotations of a unit sphere to fractional linear transformations of a plane by stereographic projection are discussed. All derivations and representations are tried to make in coordinate-invariant way.