In this paper,a monitoring and controlling system for the safety in production and environmental parameters of a small and medium-sized coal mine has been developed after analyzing the current domestic coal production...In this paper,a monitoring and controlling system for the safety in production and environmental parameters of a small and medium-sized coal mine has been developed after analyzing the current domestic coal production and security conditions. The client computer can convert the analog signal about the safety in production and environmental parameters detected from the monitoring terminal into digital signal,and then,send the signal to the coal mine safety monitoring centre. This information can be analyzed,judged,and diagnosed by the monitoring-management-controlling software for helping the manager and technical workers to control the actual underground production and security situations. The system has many advantages including high reliability,better performance of real-time monitoring,faster data communicating and good practicability,and it can effectively prevent the occurrence of safety incidents in coal mines.展开更多
The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railw...The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally.展开更多
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
The safety status of the coal mines is closely correlated with the operating status and its changes of the whole working system in the coal mines, and the safety system is the sub system of the whole production system...The safety status of the coal mines is closely correlated with the operating status and its changes of the whole working system in the coal mines, and the safety system is the sub system of the whole production system. In this paper, based on the analysis of the complicacy of the safety sub system and its affecting factors, the theory basis of the indexes system of the safety assessment was studied, including the establishing principles of the indexes system , the structure of the indexes system, the determining methods of the assessment indexes. The complete indexes system was established for the safety assessment of the coal mines in the paper.展开更多
A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation informat...A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.展开更多
Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA...Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.展开更多
Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being in...Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being integrated into the safety management of coal mining,including virtual simulation technology.This paper focuses on analyzing and researching the application of virtual simulation technology in the safety management of coal mining,providing insights for reference.展开更多
Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u...Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.展开更多
Background: Use of inappropriate amikacin dose is one of the most important factors in inducing toxicity, prolonged hospitalization as well as in increasing patient’s mortality. Objective: The aims of this study are ...Background: Use of inappropriate amikacin dose is one of the most important factors in inducing toxicity, prolonged hospitalization as well as in increasing patient’s mortality. Objective: The aims of this study are the analysis of amikacin dose, serum level and the examination of the effectiveness of the clinical pharmacologist (CP) therapeutic drug monitoring (TDM) intervention to guarantee the safety of amikacin use. Methods: This is a one-year retrospective observational chart review study, which evaluates amikacin dose, serum drug level, development of adverse effects in patients on amikacin with or without CP TDM consultation. Results: Amikacin was prescribed for 393 complex patients, with median age 83. Amikacin group (AG) included 140 (32%) courses with CP consultation (AG1) and 292 (68%) courses without CP consultation (AG2). The distribution of most study characteristics in both groups was similar including amikacin dose (9-10 mg/kg/day), renal failure (14%) and mortality (12%). Acceptance for CP consultation was in 46% of amikacin courses and dose changes were done in 63% after CP intervention. Prolonged antibiotic course (4.6 ± 1.5 vs 3.8 ± 1.6 days, p < 0.0001) and the patient’s hemodynamic instability (15% vs 7%, p = 0.01) were more frequent in the AG1 compared to the AG2. There was a strong association between CP consultation and prolonged hospitalization (p = 0.005), while no association between it and amikacin adverse effects, renal failure or mortality. Conclusions: There was no trend to reducing amikacin toxicity, days of hospitaliza tion or mortality in patients with CP consultation. CP TDM intervention was more in the management of complicated clinical situations. However, it is necessary to optimize it.展开更多
Coal mine safety supervision system plays an important role in the coal mine safety management in China.However,the current supervision system is established on the basis of learning the advanced experience from other...Coal mine safety supervision system plays an important role in the coal mine safety management in China.However,the current supervision system is established on the basis of learning the advanced experience from other developed countries.It needs to be further improved according to national conditions.Therefore,the effectiveness of coal mine safety supervision system reform on three types of collieries are assessed by using time series analysis method based on comparative analysis of the supervision system before and after the reform in this paper.The regression results show that the structural reform is not conductive to the improvement of coal mine safety situation in the short term,but conductive significantly in the long term.Specifically,the effects in township coal mines are more significant than stateowned key coal mines in the long run,but negative effects also exist in the short term.The negative effects in state-owned key coal mines are non-significant compared with township coal mines.Moreover,the regression results are analyzed from the aspects of the closure policy of illegal small township coal mines at the end of 1998 and shortage of the new supervision system.Finally,the suggestions on improving the new supervision system are put forward based on the above analysis.展开更多
According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which co...According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.展开更多
The crowd sensing technology can realize the sensing and computing of people,machines,and environment in smart industrial IoT-based coal mine,which provides a solution for safety monitoring through distributed intelli...The crowd sensing technology can realize the sensing and computing of people,machines,and environment in smart industrial IoT-based coal mine,which provides a solution for safety monitoring through distributed intelligence optimization.However,due to the difficulty of neural network training to achieve global optimality and the fact that traditional LSTM methods do not consider the relationship between adjacent machines,the accuracy of human body position prediction and pressure value prediction is not high.To solve these problems,this paper proposes a smart industrial IoT empowered crowd sensing for safety monitoring in coal mine.First,we propose a Particle Swarm Optimization-Elman Neural Network(PE)algorithm for the mobile human position prediction.Second,we propose an ADI-LSTM neural network prediction algorithm for pressure values of machines supports in underground mines.Among them,our proposed PE algorithm has the lowest average cumulative prediction error,and the trajectory fit rate is improved by 24.1%,13.9%and 8.7%compared with Kalman filtering,Elman and Kalman plus Elman algorithms,respectively.Meanwhile,compared with single-input ARIMA,RNN,LSTM,and GRU,the RMSE values of our proposed ADI-LSTM are reduced by 36.6%,52%,32%,and 13.7%,respectively;and the MAPE values are reduced by 0.0003%,0.9482%,1.1844%,and 0.3620%,respectively.展开更多
We present an optically powered,intrinsically safe gas monitoring system to measure four essential environmental gases(CH_(4),CO_(2),CO and O_(2)),together with ambient temperature and pressure,for underground mines.T...We present an optically powered,intrinsically safe gas monitoring system to measure four essential environmental gases(CH_(4),CO_(2),CO and O_(2)),together with ambient temperature and pressure,for underground mines.The system is based on three key technologies developed at UNSW:(1)power-over-fbre(PoF)at 1550 nm using a single industry-standard,low-cost single-mode fbre(SMF)for both power delivery and information transmission,(2)liquid–crystal-based optical transducers for optical telemetry,and(3)ultra-low power consumption design of all electronics.Together,this approach allows each gas monitoring station to operate with less than 150 mW of optical power,meeting the intrinsic safety requirements specifed by the IEC60079-28 standard.A 2-month feld trial at BMA’s Broadmeadow underground mine proved the cabling compatibility to the mine’s existing optical network and the stability of the system performance.Compared with conventional electrically powered gas sensors,this technology bypasses the usual roadblocks of underground gas monitoring where electrical power is either unsafe or unavailable.Furthermore,using one fbre for both power delivery and communication enables longer distance coverage,reduces optical cabling and increases multiplexing possibilities and data throughput for better awareness of underground environment.展开更多
The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying t...The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying the hidden hazard sources aregiven. Lastly, the risk pre-alarm and risk control method are confirmed, the managementstandard and management measure are used to eliminate the hidden hazard sources. Inthis study, an evaluation system is built to evaluate the result of risk management.展开更多
The mine ventilation and safety is one of the most important factors to influence on the coal production.More attention has been paid to manage safety information in scientific, efficient, and real-time way. Therefore...The mine ventilation and safety is one of the most important factors to influence on the coal production.More attention has been paid to manage safety information in scientific, efficient, and real-time way. Therefore, it is important to develop a practical mine safety assurance information system (CSAIS). Based on analyzing the actual management mode for ventilation and safety on mine, the paper studies the structure and function of the mine safety assurance information system based on GIS in detail. Moreover, it also suggests some applications and solutions. By combining with the practical situation, the paper realizes the whole function of the present system.展开更多
This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection ...This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.展开更多
Analyzed the monitor results under current systems concerning game and then pointed out that a way-out to improve chinese coal mine production safety control is to implement system innovation and punish the monitor's...Analyzed the monitor results under current systems concerning game and then pointed out that a way-out to improve chinese coal mine production safety control is to implement system innovation and punish the monitor's lazy behaviors strictly.展开更多
Container vessels navigate among the world's ports, frequently passing through narrow and congested waters. Due to the many layers of containers on a container vessel's decks, it is difficult for the crew to be awar...Container vessels navigate among the world's ports, frequently passing through narrow and congested waters. Due to the many layers of containers on a container vessel's decks, it is difficult for the crew to be aware of all fishing vessels and other obstacles in a container vessel's radar observation blind zone. This greatly increases the risk of collisions and other accidents. Given such great challenges to safe navigation and safety management with container vessels, their security risks are severe. An effective visual monitoring system can improve the safety of the water area surrounding container vessel by eliminating a vessel's observation blind zone, providing an effective safety measure for vessels navigating fishing zones and other troublesome areas. The system has other functions, such as accident recording, ship security, and monitoring of loading and unloading operations, thus ensuring the ship operates safely. Six months' trial operation showed that the system facilitates safe navigation of container vessels.展开更多
基金supported by Technologies R&D of State Administration of Work Safety (06-399)Technologies R&D of Hunan Province ( No.05FJ4071)
文摘In this paper,a monitoring and controlling system for the safety in production and environmental parameters of a small and medium-sized coal mine has been developed after analyzing the current domestic coal production and security conditions. The client computer can convert the analog signal about the safety in production and environmental parameters detected from the monitoring terminal into digital signal,and then,send the signal to the coal mine safety monitoring centre. This information can be analyzed,judged,and diagnosed by the monitoring-management-controlling software for helping the manager and technical workers to control the actual underground production and security situations. The system has many advantages including high reliability,better performance of real-time monitoring,faster data communicating and good practicability,and it can effectively prevent the occurrence of safety incidents in coal mines.
基金financially supported by the National Natural Science Foundation of China(Nos.62275244,62375258,62225507,U2033211,62175230,and 62175232)the CAS Project for Young Scientists in Basic Research(No.YSBR-065)+2 种基金Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20200001)National Key R&D Program of China(No.2022YFB3607800,No.2022YFB3605800,and No.2022YFB4601501)Key Program of the Chinese Academy of Sciences(ZDBS-ZRKJZ-TLC018)。
文摘The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally.
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
文摘The safety status of the coal mines is closely correlated with the operating status and its changes of the whole working system in the coal mines, and the safety system is the sub system of the whole production system. In this paper, based on the analysis of the complicacy of the safety sub system and its affecting factors, the theory basis of the indexes system of the safety assessment was studied, including the establishing principles of the indexes system , the structure of the indexes system, the determining methods of the assessment indexes. The complete indexes system was established for the safety assessment of the coal mines in the paper.
基金Projects(2013RC16,2012LWB28)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(NCET-13-1019)supported by the Program for New Century Excellent Talents in University,China
文摘A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.
基金Funded by the National Natural Science Foundation of China(No.52178241)the National Key Research and Development Program of China during the Fourteenth Five-Year Plan Period(No.2021YFB3802001)+1 种基金the Shanghai Science and Technology Innovation Action Plan(No.23D21201401)the Key Research and Development of the Shaanxi Province of China(No.2022GY-163)。
文摘Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.
文摘Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being integrated into the safety management of coal mining,including virtual simulation technology.This paper focuses on analyzing and researching the application of virtual simulation technology in the safety management of coal mining,providing insights for reference.
基金supported by the Alpha Foundation for the Improvement of Mine Safety and Health,grant number AFC316FO-84.
文摘Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.
文摘Background: Use of inappropriate amikacin dose is one of the most important factors in inducing toxicity, prolonged hospitalization as well as in increasing patient’s mortality. Objective: The aims of this study are the analysis of amikacin dose, serum level and the examination of the effectiveness of the clinical pharmacologist (CP) therapeutic drug monitoring (TDM) intervention to guarantee the safety of amikacin use. Methods: This is a one-year retrospective observational chart review study, which evaluates amikacin dose, serum drug level, development of adverse effects in patients on amikacin with or without CP TDM consultation. Results: Amikacin was prescribed for 393 complex patients, with median age 83. Amikacin group (AG) included 140 (32%) courses with CP consultation (AG1) and 292 (68%) courses without CP consultation (AG2). The distribution of most study characteristics in both groups was similar including amikacin dose (9-10 mg/kg/day), renal failure (14%) and mortality (12%). Acceptance for CP consultation was in 46% of amikacin courses and dose changes were done in 63% after CP intervention. Prolonged antibiotic course (4.6 ± 1.5 vs 3.8 ± 1.6 days, p < 0.0001) and the patient’s hemodynamic instability (15% vs 7%, p = 0.01) were more frequent in the AG1 compared to the AG2. There was a strong association between CP consultation and prolonged hospitalization (p = 0.005), while no association between it and amikacin adverse effects, renal failure or mortality. Conclusions: There was no trend to reducing amikacin toxicity, days of hospitaliza tion or mortality in patients with CP consultation. CP TDM intervention was more in the management of complicated clinical situations. However, it is necessary to optimize it.
基金supported by the National Nat-ural Science Foundation Projects of China under Grant 71271206Innovation Project of Graduate Education for Jiangsu Province under Grant KYZZ_0377.
文摘Coal mine safety supervision system plays an important role in the coal mine safety management in China.However,the current supervision system is established on the basis of learning the advanced experience from other developed countries.It needs to be further improved according to national conditions.Therefore,the effectiveness of coal mine safety supervision system reform on three types of collieries are assessed by using time series analysis method based on comparative analysis of the supervision system before and after the reform in this paper.The regression results show that the structural reform is not conductive to the improvement of coal mine safety situation in the short term,but conductive significantly in the long term.Specifically,the effects in township coal mines are more significant than stateowned key coal mines in the long run,but negative effects also exist in the short term.The negative effects in state-owned key coal mines are non-significant compared with township coal mines.Moreover,the regression results are analyzed from the aspects of the closure policy of illegal small township coal mines at the end of 1998 and shortage of the new supervision system.Finally,the suggestions on improving the new supervision system are put forward based on the above analysis.
基金Project(2006BAK04B0302)supported by the National Science and Technology Pillar Program during the 11th Five-year Plan of China
文摘According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.
基金supported in part by the National Natural Science Foundation of China(Grant No.61902311),in part by the Postdoctoral Research Foundation of China(Grant No.2019M663801)in part by the Scientific Research Project of Shaanxi Provincial Education Department(Grant No.22JK0459)+1 种基金Key R&D Foundation of Shaanxi Province(Grant No.2021SF-479)in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044 and JP21K17736.
文摘The crowd sensing technology can realize the sensing and computing of people,machines,and environment in smart industrial IoT-based coal mine,which provides a solution for safety monitoring through distributed intelligence optimization.However,due to the difficulty of neural network training to achieve global optimality and the fact that traditional LSTM methods do not consider the relationship between adjacent machines,the accuracy of human body position prediction and pressure value prediction is not high.To solve these problems,this paper proposes a smart industrial IoT empowered crowd sensing for safety monitoring in coal mine.First,we propose a Particle Swarm Optimization-Elman Neural Network(PE)algorithm for the mobile human position prediction.Second,we propose an ADI-LSTM neural network prediction algorithm for pressure values of machines supports in underground mines.Among them,our proposed PE algorithm has the lowest average cumulative prediction error,and the trajectory fit rate is improved by 24.1%,13.9%and 8.7%compared with Kalman filtering,Elman and Kalman plus Elman algorithms,respectively.Meanwhile,compared with single-input ARIMA,RNN,LSTM,and GRU,the RMSE values of our proposed ADI-LSTM are reduced by 36.6%,52%,32%,and 13.7%,respectively;and the MAPE values are reduced by 0.0003%,0.9482%,1.1844%,and 0.3620%,respectively.
基金support of the Australian Coal Industry’s Research Program(ACARP Grant C28010).
文摘We present an optically powered,intrinsically safe gas monitoring system to measure four essential environmental gases(CH_(4),CO_(2),CO and O_(2)),together with ambient temperature and pressure,for underground mines.The system is based on three key technologies developed at UNSW:(1)power-over-fbre(PoF)at 1550 nm using a single industry-standard,low-cost single-mode fbre(SMF)for both power delivery and information transmission,(2)liquid–crystal-based optical transducers for optical telemetry,and(3)ultra-low power consumption design of all electronics.Together,this approach allows each gas monitoring station to operate with less than 150 mW of optical power,meeting the intrinsic safety requirements specifed by the IEC60079-28 standard.A 2-month feld trial at BMA’s Broadmeadow underground mine proved the cabling compatibility to the mine’s existing optical network and the stability of the system performance.Compared with conventional electrically powered gas sensors,this technology bypasses the usual roadblocks of underground gas monitoring where electrical power is either unsafe or unavailable.Furthermore,using one fbre for both power delivery and communication enables longer distance coverage,reduces optical cabling and increases multiplexing possibilities and data throughput for better awareness of underground environment.
基金Supported by the National Natural Science Foundation of China(70533050)the Eleventh Five-year Science & Technology Support Plan of China(2006BAK03B0703)the Ministry of Education Humanities and Social Science (08JA630083)
文摘The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying the hidden hazard sources aregiven. Lastly, the risk pre-alarm and risk control method are confirmed, the managementstandard and management measure are used to eliminate the hidden hazard sources. Inthis study, an evaluation system is built to evaluate the result of risk management.
基金National Natural Science Foudation of China(59904001)
文摘The mine ventilation and safety is one of the most important factors to influence on the coal production.More attention has been paid to manage safety information in scientific, efficient, and real-time way. Therefore, it is important to develop a practical mine safety assurance information system (CSAIS). Based on analyzing the actual management mode for ventilation and safety on mine, the paper studies the structure and function of the mine safety assurance information system based on GIS in detail. Moreover, it also suggests some applications and solutions. By combining with the practical situation, the paper realizes the whole function of the present system.
基金supported by the program of Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Hunan Province and Xiangtan City Natural Science Joint Foundation(No.09JJ8005)+1 种基金the Industrial Cultivation Program of Scientific and Technological Achievements in Higher Educational Institutions of Hunan Province(No.10CY008)the Technologies R & D of Hunan Province (No.2010CK3031)
文摘This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.
文摘Analyzed the monitor results under current systems concerning game and then pointed out that a way-out to improve chinese coal mine production safety control is to implement system innovation and punish the monitor's lazy behaviors strictly.
基金the Shanghai Leading Academic Discipline Project Foundation under Grant No.T0603
文摘Container vessels navigate among the world's ports, frequently passing through narrow and congested waters. Due to the many layers of containers on a container vessel's decks, it is difficult for the crew to be aware of all fishing vessels and other obstacles in a container vessel's radar observation blind zone. This greatly increases the risk of collisions and other accidents. Given such great challenges to safe navigation and safety management with container vessels, their security risks are severe. An effective visual monitoring system can improve the safety of the water area surrounding container vessel by eliminating a vessel's observation blind zone, providing an effective safety measure for vessels navigating fishing zones and other troublesome areas. The system has other functions, such as accident recording, ship security, and monitoring of loading and unloading operations, thus ensuring the ship operates safely. Six months' trial operation showed that the system facilitates safe navigation of container vessels.