Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan...Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.展开更多
Previous studies have shown that octamer-binding transcription factor 4(Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage d...Previous studies have shown that octamer-binding transcription factor 4(Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage differentiation which are regulated by DNA methylation. To explore the relationship between the methylation pattern of Oct4 gene exon 1 and embryonic development, in this work, five different tissues(heart, liver, lung, cerebrum and cerebellum) from three germ layers were chosen from low age(50–60 d) and advanced age(60–70 d) of fetal cattle and the differences between tissues or ages were analyzed, respectively. The result showed that the DNA methylation level of Oct4 gene exon 1 was significant different(P〈0.01) between any two of three germ layers in low age(〈60 d), but kept steady of advanced age(P〉0.05)(〉60 d), suggesting that 60-d post coital was an important boundary for embryonic development. In addition, in ectoderm(cerebrum and cerebellum), there was no significant methylation difference of Oct4 gene exon 1 between low age and advanced age(P〉0.05), but the result of endoderm(liver and lung) and mesoderm(heart) were on the contrary(P〈0.01), which indicated the development of ectoderm was earlier than endoderm and mesoderm. The methylation differences from the 3rd, 5th and 9th Cp G-dinucleotide loci of Oct4 gene exon 1 were significantly different between each two of three germ layers(P〈0.05), indicating that these three loci may have important influence on bovine embryonic development. This study showed that bovine germ layers differentiation was significantly related to the DNA methylation status of Oct4 gene exon 1. This work firstly identified the DNA methylation profile of bovine Oct4 gene exon 1 and its association with germ layers development in fetus and adult of cattle. Moreover, the work also provided epigenetic information for further studying bovine embryonic development and cellular reprogramming.展开更多
A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can ...A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting.展开更多
A new class of activated mesoporous Al-MCM-41 layers was deposited on Fe-CrAl metallic foils in the presence of cationic surfactant cetyltrimethylammonium bromide under basic conditions by an in-situ hydrothermal meth...A new class of activated mesoporous Al-MCM-41 layers was deposited on Fe-CrAl metallic foils in the presence of cationic surfactant cetyltrimethylammonium bromide under basic conditions by an in-situ hydrothermal method. The characterization techniques including X-ray diffraction, nitrogen adsorption and transmission electron microscopy, as well as field-emission scanning electron microscopy were performed to investigate the pore structure and surface morphology of the Al-MCM-41 layers. The Al-MCM-41 materials are of amorphous structure but exhibit large BET surface area (up to 757.0 m2/g) and pore volume (up to 0.72 cm3/g), as well as a mean pore diameter of 3 nm. The layers deposited on the FeCrAl foils are continuous despite with a few of holes on the surface.展开更多
The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-...The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.展开更多
Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powde...Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.展开更多
Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40 underla...Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40 underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40 undedayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.展开更多
Photo-generated carrier recombination loss at the CZTSSe/Cd S front interface is a key issue to the opencircuit voltage(V_(OC)) deficit of Cu_(2)ZnSnS_(x)Se_(4-x)(CZTSSe) solar cells. Here, by the aid of an easy-handl...Photo-generated carrier recombination loss at the CZTSSe/Cd S front interface is a key issue to the opencircuit voltage(V_(OC)) deficit of Cu_(2)ZnSnS_(x)Se_(4-x)(CZTSSe) solar cells. Here, by the aid of an easy-handling spin-coating method, a thin PCBM([6,6]-phenyl-C61-butyric acid methyl ester) layer as an electron extraction layer has been introduced on the top of CdS buffer layer to modify CZTSSe/CdS/ZnO-ITO(In_(2)O_(3):Sn) interfacial properties. Based on Sn^(4+)/DMSO(dimethyl sulfoxide) solution system, a totalarea efficiency of 12.87% with a VOC of 529 m V has been achieved. A comprehensive investigation on the influence of PCBM layer on carrier extraction, transportation and recombination processes has been carried out. It is found that the PCBM layer can smooth over the Cd S film roughness, thus beneficial for a dense and flat window layer. Furthermore, this CZTSSe/Cd S/PCBM heterostructure can accelerate carrier separation and extraction and block holes from the front interface as well, which is mainly ascribed to the downward band bending of the absorber and a widened space charge region. Our work provides a feasible way to improve the front interfacial property and the cell performance of CZTSSe solar cells by the aid of organic interfacial materials.展开更多
Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(...Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis.展开更多
A new ion-pair complex, [BzMeQ1]2[Ni(nmt)2]1([BzMeQ1]^+ = 1-benzyl-4-ntethylquino- linium, mnta- -- maleonitriledithiolate) has been synthesized and structurally characterized by IR, ESI-MS and X-ray diffraction ...A new ion-pair complex, [BzMeQ1]2[Ni(nmt)2]1([BzMeQ1]^+ = 1-benzyl-4-ntethylquino- linium, mnta- -- maleonitriledithiolate) has been synthesized and structurally characterized by IR, ESI-MS and X-ray diffraction methods. Complex 1 is of triclinic, space group PI, with a = 9.079(2), b = 10.154(2), c = 11.243(2)A, α= 81.58(1), β= 69.63(1), γ = 68.02(1)°, V= 940.1(3)A3, Dc = 1.427 g/cm^3, Z = 1, F(000) = 418 and R = 0.0442. A 2D layer structure is formed via the cation-cation π…π and C-H…π interactions observed in the solid state of the complex.展开更多
Far-infraraed spoctra of the title compounds (adr.CnCuX) have been studied. Empirical assignments of the main badns have been made. The solid- solid phase transition at Tp=38℃ in CaCuCL compound has been investigated...Far-infraraed spoctra of the title compounds (adr.CnCuX) have been studied. Empirical assignments of the main badns have been made. The solid- solid phase transition at Tp=38℃ in CaCuCL compound has been investigated by the far-infrared spectra with variation of temperatures. It is found that the solid-solid phase transition of this compound waw accompanied by the distortion disorder of the MCL52- octahedra.展开更多
In this paper, a new structure of a 4H-SiC bipolar junction transistor (BJT) with a buried layer (BL) in the base is presented. The current gain shows an approximately 100% increase compared with that of the conve...In this paper, a new structure of a 4H-SiC bipolar junction transistor (BJT) with a buried layer (BL) in the base is presented. The current gain shows an approximately 100% increase compared with that of the conventional structure. This is attributed to the creation of a built-in electric field for the minority carriers to transport in the base which is explained based on 2D device simulations. The optimized design of the buried layer region is also considered by numeric simulations.展开更多
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
基金the National Natural Science Foundation of China(21975084,51672089)Special Funding on Applied Science and Technology in Guangdong(2017B020238005)+2 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)State Scholarship Fund of China Scholarship Council(200808440114)the Ding Ying Talent Project of South China Agricultural University for their support
文摘Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.
基金supported by the Natural Science Foundation of Shaanxi Province, China (2014JQ3104)the National Natural Science Foundation of China (31000655)China Postdoctoral Science Foundation funded project (2014M560809)
文摘Previous studies have shown that octamer-binding transcription factor 4(Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage differentiation which are regulated by DNA methylation. To explore the relationship between the methylation pattern of Oct4 gene exon 1 and embryonic development, in this work, five different tissues(heart, liver, lung, cerebrum and cerebellum) from three germ layers were chosen from low age(50–60 d) and advanced age(60–70 d) of fetal cattle and the differences between tissues or ages were analyzed, respectively. The result showed that the DNA methylation level of Oct4 gene exon 1 was significant different(P〈0.01) between any two of three germ layers in low age(〈60 d), but kept steady of advanced age(P〉0.05)(〉60 d), suggesting that 60-d post coital was an important boundary for embryonic development. In addition, in ectoderm(cerebrum and cerebellum), there was no significant methylation difference of Oct4 gene exon 1 between low age and advanced age(P〉0.05), but the result of endoderm(liver and lung) and mesoderm(heart) were on the contrary(P〈0.01), which indicated the development of ectoderm was earlier than endoderm and mesoderm. The methylation differences from the 3rd, 5th and 9th Cp G-dinucleotide loci of Oct4 gene exon 1 were significantly different between each two of three germ layers(P〈0.05), indicating that these three loci may have important influence on bovine embryonic development. This study showed that bovine germ layers differentiation was significantly related to the DNA methylation status of Oct4 gene exon 1. This work firstly identified the DNA methylation profile of bovine Oct4 gene exon 1 and its association with germ layers development in fetus and adult of cattle. Moreover, the work also provided epigenetic information for further studying bovine embryonic development and cellular reprogramming.
基金supported by the National Natural Science Foundation of China(21663027,51262028,21261021)the Science and Technology Support Project of Gansu Province(1504GKCA027)+2 种基金the Program for the Young Innovative Talents of Longyuanthe Program for Innovative Research Team(NWNULKQN-15-2)the Undergraduate Academic Innovative Research Team of Northwest Normal University~~
文摘A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting.
基金Funded by the National Natural Science Foundation of China (No.50502002)Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM200610005016)Youth Foundation of Beijing University of Technology (No.00190)
文摘A new class of activated mesoporous Al-MCM-41 layers was deposited on Fe-CrAl metallic foils in the presence of cationic surfactant cetyltrimethylammonium bromide under basic conditions by an in-situ hydrothermal method. The characterization techniques including X-ray diffraction, nitrogen adsorption and transmission electron microscopy, as well as field-emission scanning electron microscopy were performed to investigate the pore structure and surface morphology of the Al-MCM-41 layers. The Al-MCM-41 materials are of amorphous structure but exhibit large BET surface area (up to 757.0 m2/g) and pore volume (up to 0.72 cm3/g), as well as a mean pore diameter of 3 nm. The layers deposited on the FeCrAl foils are continuous despite with a few of holes on the surface.
基金Project(51478164)supported by the National Natural Science Foundation of ChinaProject(BK20181306)supported by Natural Science Foundation of Jiangsu Province,China。
文摘The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.
基金Funded by the National Natural Science Foundation of China(No.21476269)
文摘Adsorption of 2, 4, 6-trichlorophenol(TCP) onto the calcined Mg/Al-CO_3 layered double hydroxide(CLDH) was investigated. The prepared Mg/Al-CO_3 layered double hydroxide(LDH) and CLDH were characterized by powder X-ray diffraction(XRD) and thermo gravimetric analyzer-differential scanning calorimeters(TG-DSC). Moreover, 2,4,6-trichlorophenol(TCP) was removed effectively(94.7% of removal percentage in 9h) under the optimized experimental conditions. The adsorption kinetics data fitted the pseudosecond-order model well. The Freundlich, Langmuir, and Tempkin adsorption models were applied to the experimental equilibrium adsorption data at different temperatures of solution. The adsorption data fitted the Freundlieh adsorption isotherm with good values of the correlation coefficient. A mechanism of the adsorption process is proposed according to the intraparticle diffusion model, which indicates that the overall rate of adsorption can be described as three steps.
文摘Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40 underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40 undedayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.
基金supported by the National Natural Science Foundation of China(U2002216,52172261,51627803,51972332,22075150,and U1902218)the National Key Research and Development Program of China(2019YFE0118100)。
文摘Photo-generated carrier recombination loss at the CZTSSe/Cd S front interface is a key issue to the opencircuit voltage(V_(OC)) deficit of Cu_(2)ZnSnS_(x)Se_(4-x)(CZTSSe) solar cells. Here, by the aid of an easy-handling spin-coating method, a thin PCBM([6,6]-phenyl-C61-butyric acid methyl ester) layer as an electron extraction layer has been introduced on the top of CdS buffer layer to modify CZTSSe/CdS/ZnO-ITO(In_(2)O_(3):Sn) interfacial properties. Based on Sn^(4+)/DMSO(dimethyl sulfoxide) solution system, a totalarea efficiency of 12.87% with a VOC of 529 m V has been achieved. A comprehensive investigation on the influence of PCBM layer on carrier extraction, transportation and recombination processes has been carried out. It is found that the PCBM layer can smooth over the Cd S film roughness, thus beneficial for a dense and flat window layer. Furthermore, this CZTSSe/Cd S/PCBM heterostructure can accelerate carrier separation and extraction and block holes from the front interface as well, which is mainly ascribed to the downward band bending of the absorber and a widened space charge region. Our work provides a feasible way to improve the front interfacial property and the cell performance of CZTSSe solar cells by the aid of organic interfacial materials.
基金support from the National Natural Science Foundation of China(51402100,21905088,21573066 and U19A2017)the Provincial Natural Science Foundation of Hunan(2020JJ5044,2022JJ10006)。
文摘Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis.
基金the President's Science Foundation of South China Agricultural University (No. 2005K092)
文摘A new ion-pair complex, [BzMeQ1]2[Ni(nmt)2]1([BzMeQ1]^+ = 1-benzyl-4-ntethylquino- linium, mnta- -- maleonitriledithiolate) has been synthesized and structurally characterized by IR, ESI-MS and X-ray diffraction methods. Complex 1 is of triclinic, space group PI, with a = 9.079(2), b = 10.154(2), c = 11.243(2)A, α= 81.58(1), β= 69.63(1), γ = 68.02(1)°, V= 940.1(3)A3, Dc = 1.427 g/cm^3, Z = 1, F(000) = 418 and R = 0.0442. A 2D layer structure is formed via the cation-cation π…π and C-H…π interactions observed in the solid state of the complex.
文摘Far-infraraed spoctra of the title compounds (adr.CnCuX) have been studied. Empirical assignments of the main badns have been made. The solid- solid phase transition at Tp=38℃ in CaCuCL compound has been investigated by the far-infrared spectra with variation of temperatures. It is found that the solid-solid phase transition of this compound waw accompanied by the distortion disorder of the MCL52- octahedra.
文摘In this paper, a new structure of a 4H-SiC bipolar junction transistor (BJT) with a buried layer (BL) in the base is presented. The current gain shows an approximately 100% increase compared with that of the conventional structure. This is attributed to the creation of a built-in electric field for the minority carriers to transport in the base which is explained based on 2D device simulations. The optimized design of the buried layer region is also considered by numeric simulations.