Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a...Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
The intertwined challenges of climate change, resource scarcity, and conflict require innovative integrated solutions that address both environmental and societal vulnerabilities. Technological innovation offers a tra...The intertwined challenges of climate change, resource scarcity, and conflict require innovative integrated solutions that address both environmental and societal vulnerabilities. Technological innovation offers a transformative pathway for climate change adaptation and peacebuilding, with emphasis on a holistic approach to managing resource conflicts and environmental challenges. This paper explores the synergies between emerging technologies and strategic framework to mitigate climate-induced tensions and foster resilience. It focuses on the application of renewable energy systems to reduce dependence on contested resources, blockchain technology to ensure transparency in climate finance, equitable resource allocation and Artificial Intelligence (AI) to enhance early warning systems for climate-related disaster and conflicts. Additionally, technologies such as precision agriculture and remote sensing empower communities to optimize resource use, adapt to shifting environmental conditions, and reduce competition over scares resources. These innovations with inclusive governance and local capacity-building are very primordial. Ultimately, the convergence of technology, policy, and local participation offers a scalable and replicable model for addressing the dual challenges of environmental degradation and instability, thereby paving the way for a more sustainable and peaceful future.展开更多
目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例...目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例急性脑卒中患者。根据取栓技术的不同,患者被分为研究组(应用ADAPT技术直接抽吸取栓,34例)和对照组[应用Solitaire FR支架机械取栓术(Solitaire FR with intracranial support catheter for mechanical thrombectomy,SWIM),20例]。比较两组的取栓次数、手术操作时间、血管完全再通率、术前与术后2周美国国立卫生研究院卒中量表(National institutes of health stroke scale,NIHSS)评分、并发症发生率及术后3个月良好预后率。结果两组采用不同取栓技术后,研究组的取栓次数和手术操作时间均低于对照组(P<0.05)。术前两组的NIHSS评分差异无统计学意义(P>0.05)。术后2周,研究组的NIHSS评分显著低于对照组(P<0.05)。两组的血管完全再通率分别为70.59%和75.00%,术后3个月良好预后率分别为64.71%和60.00%,两组间差异无统计学意义(P>0.05)。研究组的并发症发生率(8.82%)显著低于对照组(20.00%)(P<0.05)。结论与SWIM取栓技术相比,ADAPT技术在血管再通率上无显著差异,但能显著减少急性脑卒中患者的取栓次数和手术操作时间,提升术后3个月的良好预后率,改善术后2周的NIHSS评分,并降低并发症发生率。ADAPT技术在改善患者功能恢复和降低并发症方面显示了更大的潜力,为急性缺血性脑卒中的临床治疗提供了有力的替代方案。展开更多
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change.Quercus is a keystone genus in Northern Hem...Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change.Quercus is a keystone genus in Northern Hemisphere forests,and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations.Here we used a newly sequenced genome of Quercus gilva,an evergreen oak species from East Asia,with 18 published Fagales genomes to determine how Fagaceae genomes have evolved,identify genomic footprints of ecological adaptability in oaks in general,as well as between evergreen and deciduous oaks.We found that oak species exhibited a higher degree of genomic conservation and stability,as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events.In addition,we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense(e.g.,cuticle biosynthesis and oxidosqualene cyclase genes),which may represent the foundation for the ecological adaptation of oak species.Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks.This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic,genome evolutionary,and functional genomic analyses.展开更多
With the deepening of cross-cultural educational cooperation between China and Malaysia,the cross-cultural challenges that Chinese overseas students face in Malaysia due to language and cultural differences have becom...With the deepening of cross-cultural educational cooperation between China and Malaysia,the cross-cultural challenges that Chinese overseas students face in Malaysia due to language and cultural differences have become increasingly prominent.Focusing on Chinese graduate students at a public university in Malaysia where English is the medium of instruction,this study employs a scale survey method in conjunction with IBM SPSS 26.0 and Smart PLS 4.0 for data analysis to quantitatively explore the level of language anxiety and its relationship with cross-cultural adaptability and learning motivation.The results indicate that most Chinese graduate students experience notable language anxiety,which is significantly negatively correlated with cross-cultural adaptability,especially academic adaptability,but is not related to learning motivation.Furthermore,the study reveals the complex influencing mechanism of language anxiety within multicultural educational environments and offers suggestions for improvement tailored to Malaysia’s unique educational context.These include utilizing technological tools for language interventions,optimizing classroom teaching strategies,enhancing language learning motivation through external incentives,strengthening training for cross-cultural adaptation skills,and promoting deeper cross-cultural communication.This study provides theoretical support and practical references for alleviating language anxiety and enhancing the cross-cultural adaptability of Chinese overseas students.展开更多
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil...Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.展开更多
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
Tropical coral islands represent one of the extremely stressful ecosystems,characterized by high salinity,seasonal drought,heat,strong ultraviolet radiation,and infertile soil,which constraint species occurrence,limit...Tropical coral islands represent one of the extremely stressful ecosystems,characterized by high salinity,seasonal drought,heat,strong ultraviolet radiation,and infertile soil,which constraint species occurrence,limit plant growth and development,and reduce species richness comparing to tropical continental islands with mesophytic habitats(Li et al.,2024;Ren et al.,2017;Tu et al.,2022,2024).Coupled with global climate changes,these adverse conditions have been being exacerbated,leading to extensive degradation of ecosystems throughout the tropical coral islands(Li et al.,2021).Native insular plant resources provide enormous potentials in island greening and ecological restoration,since they have colonized and become well adapted to the specialized habitat on tropical coral islands,evolving a series of functional traits and molecular strategies to accommodate the abiotic stresses.Thus,understanding the genomic make-up of these plants will help uncover molecular mechanisms underlying adaptation to tropical coral islands.However,contrary to the numerous genomic studies done for other extreme habitats,such as deserts(Hu et al.,2021;Ma et al.,2013),alpine regions(Zhang et al.,2023),intertidal habitats(Feng et al.,2021;Hu et al.,2020;Natarajan et al.,2021),and karst caves(Feng et al.,2020),molecular adaptation of plants on the tropical coral islands remains to be elucidated.展开更多
This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergen...This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergence in social systems.By integrating mathematical models,agent-based modeling,network dynamic analysis,and hybrid modeling approaches,the study applies CAS theory to case studies in economic markets,political decision-making,and social interactions.The experimental results demonstrate that local interactions among individual agents can give rise to complex global phenomena,such as market fluctuations,opinion polarization,and sudden outbreaks of social movements.This framework not only provides a more robust explanation for the nonlinear dynamics and abrupt transitions that traditional models often fail to capture,but also offers valuable decision-support tools for public policy formulation,social governance,and risk management.Emphasizing the importance of interdisciplinary approaches,this work outlines future research directions in high-performance computing,artificial intelligence,and real-time data integration to further advance the theoretical and practical applications of CAS in the social sciences.展开更多
News is an important medium to transmit social information and reflect social reality. Its effects are irreplaceable and the news language which is a carrier to spread information is in fact influenced by many factors...News is an important medium to transmit social information and reflect social reality. Its effects are irreplaceable and the news language which is a carrier to spread information is in fact influenced by many factors such as society, economy and culture. In order to exert its function to gain different social ends, the presentation of news language owns distinguishing features. This article starts from Verschueren's Adaption Theory to have the final conclusion that the adaption to the social, mental and physical world is the key element for the determination of the originality in news language.展开更多
Based on specimens collected in Yinggehai, Hainan, China from 2013 to 2016, a stable epiphytic taxon is found on the surface of the individual of marine green alga Cladophora aokii Yamada. According to the morphologic...Based on specimens collected in Yinggehai, Hainan, China from 2013 to 2016, a stable epiphytic taxon is found on the surface of the individual of marine green alga Cladophora aokii Yamada. According to the morphological characteristics, the taxonomy of Cl. aokii and its epiphytes is carried out. There are some epiphytes attached on Cl. aokii Yamada including Cl. fascicularis (Mertens ex C. Agardh) Kfitzing, Chaetomorpha pachynerna (Montagne) Kiitzing, Cerarniurn carnouii Dawson, Licmophora abbreviata Agardh, Lyngbya sp. and Chattonella sp.. The formation of the individual of Cl. aokii is dissected and explained, which can help to analyze the adaption in details among this species, its epiphytes and native marine environment. The results reveal the marine macroepiphytic taxonomy in Ha/nan, China, and preliminarily explain the adaptive relationship between macroalgae and environment.展开更多
A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to...A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision.展开更多
Neurodegenerative disease is a condition in which subpopulations of neuronal cells of the brain and spinal cord are selectively lost. A common event in many neurodegenerative diseases, such as Parkinson's disease (P...Neurodegenerative disease is a condition in which subpopulations of neuronal cells of the brain and spinal cord are selectively lost. A common event in many neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis and prion diseases, is the increased level of endoplasmic reticulum (ER) stress caused by accumulation and deposits of inclusion bodies that contain abnormal aggregated proteins. However, the exact contributions to and causal effects of ER stress in neuron degeneration are not clear (Lindholm et al., 2006).展开更多
We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the pl...We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the plateau (PG). The other was by progressively increasing the time of exposure to hypoxia with oxygen supplied in stages after radical plateau (RG). By testing the blood oxygen saturation (SpO2), heart rate (HR), and quality of sleep after arriving at the 3800 m high plateau, results showed that the pre-acclimatization and radical groups performed better than the control group (CG). Both strategies were equivalent in terms of effects and principles in providing more flexible choices for acclimatization.展开更多
Based on physiological properties of synapse, soma and axon, this paper presents and analyses a model of neural circuit which can approximately simulate input-output relation, strength-duration curve, adaption and non...Based on physiological properties of synapse, soma and axon, this paper presents and analyses a model of neural circuit which can approximately simulate input-output relation, strength-duration curve, adaption and nonlinear connection of real neuron. The obtained results show that the model approximates to realistic principles of neural computation better than the available neural networks. The impulse-coded WTA(winner takes all) networks constructed with the above model find the winner more effectively than the analog WTA. Finally, the two important concepts: time competition and strength competition are introduced, which illustrate that the model has abilities to perform series and parallel information processing.展开更多
Climate change adaptation is the process of preparing and actively adjusting to meet the climate change (negative effects and potential opportunities). Urban adaptation is aimed at the sensitivity level of risks and s...Climate change adaptation is the process of preparing and actively adjusting to meet the climate change (negative effects and potential opportunities). Urban adaptation is aimed at the sensitivity level of risks and specific impacts of cities under the impact of climate change, and to develop policies and investment programs to reduce the vulnerability of cities to climate change risk. Urban adaptive action provides the basis and direction for the construction of urban resilience and sustainable development. Identifying the demand of adaption technologies, promoting the practical implementation of international technology transfer and reducing domestic emissions have important significance for the global response to climate change and improvement of the ability of urban adaptation. In this paper, through in-depth analysis on the concept and connotation of climate change, climate disasters and urban adaptation to climate change, the evaluation framework and steps of urban adaptation to climate change technology are determined, and six priority application technologies which can maximize the overall efficiency of sustainable development, improve the ability to adapt to climate change and at the same time reduce the cost at the greatest extent are identified.展开更多
Dynamic adaptive streaming over HTTP (DASH) has been widely deployed. However, large latency in HTTP/1.1 cannot meet the requirements of live streaming. Data- pushing in HTFP/2 is emerging as a promising technology....Dynamic adaptive streaming over HTTP (DASH) has been widely deployed. However, large latency in HTTP/1.1 cannot meet the requirements of live streaming. Data- pushing in HTFP/2 is emerging as a promising technology. For video live over HTTP/2, new challenges arise due to both low-delay and small buffer constraints. In this paper, we study the rate adaption problem over HTFP/2 with the aim to improve the quality of experience (QoE) of live streaming. To track the dynamic characteristics of the streaming system, a Markov-theoretical approach is employed. System variables are taken into account to describe the system state, by which the system transi- tion probability is derived. Moreover, we design a dynamic reward function considering both the quality of user experience and dynamic system variables. Therefore, the rate adaption problem is formulated into a Markov decision based optimization problem and the best streaming policy is obtained. At last, the effectiveness of our proposed rate adaption scheme is demonstrated by numerous experiment results.展开更多
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I...Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.展开更多
基金the National Key Research and Development Program of China(2021YFA0717900)National Natural Science Foundation of China(62471251,62405144,62288102,22275098,and 62174089)+1 种基金Basic Research Program of Jiangsu(BK20240033,BK20243057)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB402).
文摘Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
文摘The intertwined challenges of climate change, resource scarcity, and conflict require innovative integrated solutions that address both environmental and societal vulnerabilities. Technological innovation offers a transformative pathway for climate change adaptation and peacebuilding, with emphasis on a holistic approach to managing resource conflicts and environmental challenges. This paper explores the synergies between emerging technologies and strategic framework to mitigate climate-induced tensions and foster resilience. It focuses on the application of renewable energy systems to reduce dependence on contested resources, blockchain technology to ensure transparency in climate finance, equitable resource allocation and Artificial Intelligence (AI) to enhance early warning systems for climate-related disaster and conflicts. Additionally, technologies such as precision agriculture and remote sensing empower communities to optimize resource use, adapt to shifting environmental conditions, and reduce competition over scares resources. These innovations with inclusive governance and local capacity-building are very primordial. Ultimately, the convergence of technology, policy, and local participation offers a scalable and replicable model for addressing the dual challenges of environmental degradation and instability, thereby paving the way for a more sustainable and peaceful future.
文摘目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例急性脑卒中患者。根据取栓技术的不同,患者被分为研究组(应用ADAPT技术直接抽吸取栓,34例)和对照组[应用Solitaire FR支架机械取栓术(Solitaire FR with intracranial support catheter for mechanical thrombectomy,SWIM),20例]。比较两组的取栓次数、手术操作时间、血管完全再通率、术前与术后2周美国国立卫生研究院卒中量表(National institutes of health stroke scale,NIHSS)评分、并发症发生率及术后3个月良好预后率。结果两组采用不同取栓技术后,研究组的取栓次数和手术操作时间均低于对照组(P<0.05)。术前两组的NIHSS评分差异无统计学意义(P>0.05)。术后2周,研究组的NIHSS评分显著低于对照组(P<0.05)。两组的血管完全再通率分别为70.59%和75.00%,术后3个月良好预后率分别为64.71%和60.00%,两组间差异无统计学意义(P>0.05)。研究组的并发症发生率(8.82%)显著低于对照组(20.00%)(P<0.05)。结论与SWIM取栓技术相比,ADAPT技术在血管再通率上无显著差异,但能显著减少急性脑卒中患者的取栓次数和手术操作时间,提升术后3个月的良好预后率,改善术后2周的NIHSS评分,并降低并发症发生率。ADAPT技术在改善患者功能恢复和降低并发症方面显示了更大的潜力,为急性缺血性脑卒中的临床治疗提供了有力的替代方案。
基金supported by the National Natural Science Foundation of China(No.31901217)the Special Fund for Scientific Research of Shanghai Landscaping and City Appearance Administrative Bureau(grant numbers G192422,G242414,and G242416).
文摘Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change.Quercus is a keystone genus in Northern Hemisphere forests,and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations.Here we used a newly sequenced genome of Quercus gilva,an evergreen oak species from East Asia,with 18 published Fagales genomes to determine how Fagaceae genomes have evolved,identify genomic footprints of ecological adaptability in oaks in general,as well as between evergreen and deciduous oaks.We found that oak species exhibited a higher degree of genomic conservation and stability,as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events.In addition,we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense(e.g.,cuticle biosynthesis and oxidosqualene cyclase genes),which may represent the foundation for the ecological adaptation of oak species.Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks.This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic,genome evolutionary,and functional genomic analyses.
基金funded by the 2022 Annual Key Research Project on Theoretical and Practical Studies of Ideological and Political Education for University Students in GuangxiSpecial Focus on University Counselors:Exploration and Practice of a Cultivation Ecosystem for Cultivating Both Moral Character and Talent Through “One Virtue+Two Lines+Three Stages+Four Micro-Education Methods” for Ideological and Political Education in Universities from the Perspective of Peer Language Systems,Project No.:2022MSZ031
文摘With the deepening of cross-cultural educational cooperation between China and Malaysia,the cross-cultural challenges that Chinese overseas students face in Malaysia due to language and cultural differences have become increasingly prominent.Focusing on Chinese graduate students at a public university in Malaysia where English is the medium of instruction,this study employs a scale survey method in conjunction with IBM SPSS 26.0 and Smart PLS 4.0 for data analysis to quantitatively explore the level of language anxiety and its relationship with cross-cultural adaptability and learning motivation.The results indicate that most Chinese graduate students experience notable language anxiety,which is significantly negatively correlated with cross-cultural adaptability,especially academic adaptability,but is not related to learning motivation.Furthermore,the study reveals the complex influencing mechanism of language anxiety within multicultural educational environments and offers suggestions for improvement tailored to Malaysia’s unique educational context.These include utilizing technological tools for language interventions,optimizing classroom teaching strategies,enhancing language learning motivation through external incentives,strengthening training for cross-cultural adaptation skills,and promoting deeper cross-cultural communication.This study provides theoretical support and practical references for alleviating language anxiety and enhancing the cross-cultural adaptability of Chinese overseas students.
基金funded by the National Natural Science Foundation of China(grant no.32270238 and 31870311).
文摘Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金supported by the National Natural Science Foundation of China(32170232,32070222,32271613)the National Key R&D Programof China(Key Special Project for Marine Environmental Security and Sustainable Development of Coral Reefs 2021-400)+1 种基金Guangdong Science and Technology Program(2024B1212050007)the National Key Research and Development Program of China(2021YFC3100405)。
文摘Tropical coral islands represent one of the extremely stressful ecosystems,characterized by high salinity,seasonal drought,heat,strong ultraviolet radiation,and infertile soil,which constraint species occurrence,limit plant growth and development,and reduce species richness comparing to tropical continental islands with mesophytic habitats(Li et al.,2024;Ren et al.,2017;Tu et al.,2022,2024).Coupled with global climate changes,these adverse conditions have been being exacerbated,leading to extensive degradation of ecosystems throughout the tropical coral islands(Li et al.,2021).Native insular plant resources provide enormous potentials in island greening and ecological restoration,since they have colonized and become well adapted to the specialized habitat on tropical coral islands,evolving a series of functional traits and molecular strategies to accommodate the abiotic stresses.Thus,understanding the genomic make-up of these plants will help uncover molecular mechanisms underlying adaptation to tropical coral islands.However,contrary to the numerous genomic studies done for other extreme habitats,such as deserts(Hu et al.,2021;Ma et al.,2013),alpine regions(Zhang et al.,2023),intertidal habitats(Feng et al.,2021;Hu et al.,2020;Natarajan et al.,2021),and karst caves(Feng et al.,2020),molecular adaptation of plants on the tropical coral islands remains to be elucidated.
文摘This paper develops a comprehensive computational modeling and simulation framework based on Complex Adaptive Systems(CAS)theory to unveil the underlying mechanisms of self-organization,nonlinear evolution,and emergence in social systems.By integrating mathematical models,agent-based modeling,network dynamic analysis,and hybrid modeling approaches,the study applies CAS theory to case studies in economic markets,political decision-making,and social interactions.The experimental results demonstrate that local interactions among individual agents can give rise to complex global phenomena,such as market fluctuations,opinion polarization,and sudden outbreaks of social movements.This framework not only provides a more robust explanation for the nonlinear dynamics and abrupt transitions that traditional models often fail to capture,but also offers valuable decision-support tools for public policy formulation,social governance,and risk management.Emphasizing the importance of interdisciplinary approaches,this work outlines future research directions in high-performance computing,artificial intelligence,and real-time data integration to further advance the theoretical and practical applications of CAS in the social sciences.
文摘News is an important medium to transmit social information and reflect social reality. Its effects are irreplaceable and the news language which is a carrier to spread information is in fact influenced by many factors such as society, economy and culture. In order to exert its function to gain different social ends, the presentation of news language owns distinguishing features. This article starts from Verschueren's Adaption Theory to have the final conclusion that the adaption to the social, mental and physical world is the key element for the determination of the originality in news language.
基金The National Natural Science Foundation of China under contract Nos 31400186 and 31670199the Scientific Research Plan of Tianjin Municipal Education Committee under contract No.JW1705the Research Fund for Talented Scholars of Tianjin Normal University(2016)
文摘Based on specimens collected in Yinggehai, Hainan, China from 2013 to 2016, a stable epiphytic taxon is found on the surface of the individual of marine green alga Cladophora aokii Yamada. According to the morphological characteristics, the taxonomy of Cl. aokii and its epiphytes is carried out. There are some epiphytes attached on Cl. aokii Yamada including Cl. fascicularis (Mertens ex C. Agardh) Kfitzing, Chaetomorpha pachynerna (Montagne) Kiitzing, Cerarniurn carnouii Dawson, Licmophora abbreviata Agardh, Lyngbya sp. and Chattonella sp.. The formation of the individual of Cl. aokii is dissected and explained, which can help to analyze the adaption in details among this species, its epiphytes and native marine environment. The results reveal the marine macroepiphytic taxonomy in Ha/nan, China, and preliminarily explain the adaptive relationship between macroalgae and environment.
基金supported by the National Natural Science Foundation of China (60736043 60805012)the Fundamental Research Funds for the Central Universities (K50510020032)
文摘A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision.
基金supported by the Paul and Harriett Campbell Fund for ALS Researchthe Zimmerman Family Love Fundthe Judith&Jean Pape Adams Charitable Foundation
文摘Neurodegenerative disease is a condition in which subpopulations of neuronal cells of the brain and spinal cord are selectively lost. A common event in many neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis and prion diseases, is the increased level of endoplasmic reticulum (ER) stress caused by accumulation and deposits of inclusion bodies that contain abnormal aggregated proteins. However, the exact contributions to and causal effects of ER stress in neuron degeneration are not clear (Lindholm et al., 2006).
基金supported in part by the national basic research program of China 973 program(NO.2012CB518200-G)Army major issue of comprehensive medical security research of flight crew in the plateau(N0.AKJ11J005)
文摘We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the plateau (PG). The other was by progressively increasing the time of exposure to hypoxia with oxygen supplied in stages after radical plateau (RG). By testing the blood oxygen saturation (SpO2), heart rate (HR), and quality of sleep after arriving at the 3800 m high plateau, results showed that the pre-acclimatization and radical groups performed better than the control group (CG). Both strategies were equivalent in terms of effects and principles in providing more flexible choices for acclimatization.
文摘Based on physiological properties of synapse, soma and axon, this paper presents and analyses a model of neural circuit which can approximately simulate input-output relation, strength-duration curve, adaption and nonlinear connection of real neuron. The obtained results show that the model approximates to realistic principles of neural computation better than the available neural networks. The impulse-coded WTA(winner takes all) networks constructed with the above model find the winner more effectively than the analog WTA. Finally, the two important concepts: time competition and strength competition are introduced, which illustrate that the model has abilities to perform series and parallel information processing.
文摘Climate change adaptation is the process of preparing and actively adjusting to meet the climate change (negative effects and potential opportunities). Urban adaptation is aimed at the sensitivity level of risks and specific impacts of cities under the impact of climate change, and to develop policies and investment programs to reduce the vulnerability of cities to climate change risk. Urban adaptive action provides the basis and direction for the construction of urban resilience and sustainable development. Identifying the demand of adaption technologies, promoting the practical implementation of international technology transfer and reducing domestic emissions have important significance for the global response to climate change and improvement of the ability of urban adaptation. In this paper, through in-depth analysis on the concept and connotation of climate change, climate disasters and urban adaptation to climate change, the evaluation framework and steps of urban adaptation to climate change technology are determined, and six priority application technologies which can maximize the overall efficiency of sustainable development, improve the ability to adapt to climate change and at the same time reduce the cost at the greatest extent are identified.
基金supported in part by China“973”Program under Grant No.2014CB340303”ZTE Industry-Academia-Research Cooperation Funds
文摘Dynamic adaptive streaming over HTTP (DASH) has been widely deployed. However, large latency in HTTP/1.1 cannot meet the requirements of live streaming. Data- pushing in HTFP/2 is emerging as a promising technology. For video live over HTTP/2, new challenges arise due to both low-delay and small buffer constraints. In this paper, we study the rate adaption problem over HTFP/2 with the aim to improve the quality of experience (QoE) of live streaming. To track the dynamic characteristics of the streaming system, a Markov-theoretical approach is employed. System variables are taken into account to describe the system state, by which the system transi- tion probability is derived. Moreover, we design a dynamic reward function considering both the quality of user experience and dynamic system variables. Therefore, the rate adaption problem is formulated into a Markov decision based optimization problem and the best streaming policy is obtained. At last, the effectiveness of our proposed rate adaption scheme is demonstrated by numerous experiment results.
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
文摘Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.