This paper presents a neural network approach, based on high-order two-dimension temporal and dynamically clustering competitive activation mecha-nisms, to implement parallel searching algorithm and many other symboli...This paper presents a neural network approach, based on high-order two-dimension temporal and dynamically clustering competitive activation mecha-nisms, to implement parallel searching algorithm and many other symbolic logicalgorithms. This approach is superior in many respects to both the commonsequential algorithms of symbolic logic and the common neura.l network usedfor optimization problems. Simulations of problem solving examples prove theeffectiveness of the approach.展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
In materials science,data-driven methods accelerate material discovery and optimization while reducing costs and improving success rates.Symbolic regression is a key to extracting material descriptors from large datas...In materials science,data-driven methods accelerate material discovery and optimization while reducing costs and improving success rates.Symbolic regression is a key to extracting material descriptors from large datasets,in particular the Sure Independence Screening and Sparsifying Operator(SISSO)method.While SISSO needs to store the entire expression space to impose heavy memory demands,it limits the performance in complex problems.To address this issue,we propose a RF-SISSO algorithm by combining Random Forests(RF)with SISSO.In this algorithm,the Random Forests algorithm is used for prescreening,capturing non-linear relationships and improving feature selection,which may enhance the quality of the input data and boost the accuracy and efficiency on regression and classification tasks.For a testing on the SISSO’s verification problem for 299 materials,RF-SISSO demonstrates its robust performance and high accuracy.RF-SISSO can maintain the testing accuracy above 0.9 across all four training sample sizes and significantly enhancing regression efficiency,especially in training subsets with smaller sample sizes.For the training subset with 45 samples,the efficiency of RF-SISSO was 265 times higher than that of original SISSO.As collecting large datasets would be both costly and time-consuming in the practical experiments,it is thus believed that RF-SISSO may benefit scientific researches by offering a high predicting accuracy with limited data efficiently.展开更多
文摘This paper presents a neural network approach, based on high-order two-dimension temporal and dynamically clustering competitive activation mecha-nisms, to implement parallel searching algorithm and many other symbolic logicalgorithms. This approach is superior in many respects to both the commonsequential algorithms of symbolic logic and the common neura.l network usedfor optimization problems. Simulations of problem solving examples prove theeffectiveness of the approach.
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.
基金supported by the National Natural Science Foundation of China(Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities of Nankai University(Nos.63243091 and 63233001)the Supercomputing Center of Nankai University(NKSC).
文摘In materials science,data-driven methods accelerate material discovery and optimization while reducing costs and improving success rates.Symbolic regression is a key to extracting material descriptors from large datasets,in particular the Sure Independence Screening and Sparsifying Operator(SISSO)method.While SISSO needs to store the entire expression space to impose heavy memory demands,it limits the performance in complex problems.To address this issue,we propose a RF-SISSO algorithm by combining Random Forests(RF)with SISSO.In this algorithm,the Random Forests algorithm is used for prescreening,capturing non-linear relationships and improving feature selection,which may enhance the quality of the input data and boost the accuracy and efficiency on regression and classification tasks.For a testing on the SISSO’s verification problem for 299 materials,RF-SISSO demonstrates its robust performance and high accuracy.RF-SISSO can maintain the testing accuracy above 0.9 across all four training sample sizes and significantly enhancing regression efficiency,especially in training subsets with smaller sample sizes.For the training subset with 45 samples,the efficiency of RF-SISSO was 265 times higher than that of original SISSO.As collecting large datasets would be both costly and time-consuming in the practical experiments,it is thus believed that RF-SISSO may benefit scientific researches by offering a high predicting accuracy with limited data efficiently.