Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subg...Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.展开更多
A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the per...A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the performance of this model under the complex flow conditions caused by the presence of strong swirl which gives rise to both unconventional recirculation in the vicinity of the symmetry axis and strong anisotropy in the turbulence field. Comparison of the computational results are made both with the experimental data of Roback and Johnson and the computational results obtained with the typical isotropization of production model (IPM) and the k-∈ type Boussinesq viscosity model.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus...Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.展开更多
The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spi...The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spite of the decay of circulation flux, a necessary condition for local circulation to amplify along downstream was obtained under the Boussinesq's hypothesis.展开更多
The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling ...The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling flow seems incorrect.展开更多
Object To elucidate the physiological significance of the spiral flow in the arterial system from the viewpoint of atherogenic lipid transport,an ex vivo experimental comparative
The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce th...The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce the risk of anastomotic thrombosis due to the size mismatch。展开更多
Platelet concentration near the blood vessel wall is one of the major factors in the adhesion of platelets to the wall.In our previous studies,it was found that swirling flows could suppress platelet adhesion in small...Platelet concentration near the blood vessel wall is one of the major factors in the adhesion of platelets to the wall.In our previous studies,it was found that swirling flows could suppress platelet adhesion in small-caliber artificial grafts and end-to-end anastomoses.In order to better understand the beneficial effect of the swirling flow,we numerically analyzed the near-wall concentration distribution of platelets in a straight tube and a sudden tubular expansion tube under both swirling flow and normal flow conditions.The numerical models were created based on our previous experimental studies.The simulation results revealed that when compared with the normal flow,the swirling flow could significantly reduce the near-wall concentration of platelets in both the straight tube and the expansion tube.The present numerical study therefore indicates that the reduction in platelet adhesion under swirling flow conditions in small-caliber arterial grafts,or in end-to-end anastomoses as observed in our previous experimental study,was possibly through a mechanism of platelet transport,in which the swirling flow reduced the near-wall concentration of platelets.展开更多
The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmet...The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmetric disturbances The differental equations of zero-order and first-order disturbance module and governing equation of amplitude variation due to slowly divergent flow are derved The plaschko s equation for slowly divergent swirl-free jet has been extended to slowly divergent flow with swirlin the present study.展开更多
This paper is concerned with water saving for water-loop cooling tower system in power plants. A newly developed water saving device of swirling flow is presented. The key point is that the new water saving device mak...This paper is concerned with water saving for water-loop cooling tower system in power plants. A newly developed water saving device of swirling flow is presented. The key point is that the new water saving device makes the steam swirl up along the device wall rather than engender laminar flow in a corrugated plate. The corrugated plate device can save approximately 10 percent of the total lost water. In contrast to the scale model of corrugated plate water saving device, experimental analyses have demonstrated that the new water saving device of swirling flow is more efficient, with a capacity of saving more than 20 percent of water.展开更多
Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, ...Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, experimental techniques such as 2D and/or 3D LDV (Laser Doppler Velocimetry) measurements provide only limited discrete information at given points; especially, for the cases of complex flows such as dump combustor swirling flows. For this type of flows, usual numerical interpolating schemes appear to be unsuitable. Recently, neural networks have emerged as viable means of expanding a finite data set of experimental measurements to enhance better understanding of a particular complex phenomenon. This study showed that generalized feed forward network is suitable for the prediction of turbulent swirling flow characteristics in a model dump combustor. These techniques are proposed for optimum designs of dump combustors and ramjet engines.展开更多
Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomogr...Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.展开更多
A three-dimensional mathematical model has been established for a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. The discrete phase model and volume of fluid model...A three-dimensional mathematical model has been established for a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. The discrete phase model and volume of fluid model were applied to simulate the gas–liquid multiphase flow behavior in tundish and nozzle. The effect of argon flow rate on the migration behavior of bubbles and interface behavior between steel and slag was also investigated. The presented results indicate that the novel coupling process can significantly change the flow pattern in the stream zone of a tundish, prolong the average residence time of liquid steel, and reduce the dead fraction. A complete annular gas curtain is formed around the stopper rod of tundish. Under the action of drag force of liquid steel, a part of small bubbles enter the nozzle through the swirling grooves and gather toward the center of the nozzle by centripetal force. As the argon flow rate increases, the volume fraction of argon gas entering the nozzle increases, which enhances the swirl intensity and increases the concentration of bubbles in the nozzle. To avoid the formation of slag open eye in tundish, the argon flow rate should not exceed 8 L min−1.展开更多
Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of j...Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of jet flow structures with impinging distance is characterized using the technique of particle image velocimetry (PIV). Correspondingly, the distributions of wall pressure and heat transfer on the plate are measured. At sufficiently large impinging distances, without swirling flow, the obtained flow and wall pressure/heat transfer data are consistent with the classical observation for a conventional annular impinging jet, showing the transition from annular impinging jet flow to single circular impinging jet-like flow. In contrast, no such transition occurs in the presence of flow turning by short guide vanes. At short and intermediate impinging distances, flow turning causes more non-uniform distributions of wall pressure and heat transfer on the target plate and the local heat transfer rates higher than those of the conventional annular jet. This is attributed to the vortical flow structures shed and convected downstream from the short guide vanes. In sharp contrast, at large impinging distances, the larger momentum loss due to flow turning results in lower heat transfer rates on the plate.展开更多
Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic...Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulentlength scale modification conception, we present two modified K-ε models. To investigate thebehaviour of the modified turbulence models, they are used to predict two representative turbulentswirling flows. The computational results, after compared with the experimental data, show that themodified K-ε models substantially improve the prediction of the standard K-ε model for theturbulent swirling flows.展开更多
In order to weaken the bias flow in the submerged entry nozzle (SEN) with slide- gate, the rotating magnetic field was imposed. The numerical method was employed to investigate the effect of rotating magnetic field ...In order to weaken the bias flow in the submerged entry nozzle (SEN) with slide- gate, the rotating magnetic field was imposed. The numerical method was employed to investigate the effect of rotating magnetic field on the flow field in the SEN and the mold under different slide-gate opening ratios. Numerical results showed that when the slide-gate opening ratio is smaller than 100%, the flow field in the SEN and the mold become asymmetry and there is an obvious circulation under the slide- gate in the SEN. With increasing exciting current, the divergent angle of liquid steel at the SEN outlet increases, the impact depth of liquid steel in the mold decreases. With increasing slide-gate opening ratio, the impact depth of liquid steel in the mold increases and the required exciting current to weaken the bias flow should increase.展开更多
Flow measurement is important in the fluid process and transmission system. For the need of accuracy measure- ment of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may p...Flow measurement is important in the fluid process and transmission system. For the need of accuracy measure- ment of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may pro- duce swirling flow in the natural gas pipeline networks system and many other industry fields. In order to reveal the influence of upstream swirling flow on internal flow fields and the metrological characteristics, numerical si- mulations are carried out on the swirl meter. Using RNG k-e turbulent model and SIMPLE algorithm, the flow field is numerically simulated under swirling flows generated from co-swirl and counter-swirl flow. Simulation results show fluctuation is enhanced or weakened depending on the rotating direction of swirling flow. A coun- ter-swift flow increases the entropy production rate at the inlet and outlet of the swirler, the junction region between throat and divergent section, and then the pressure loss is increased. The vortex precession dominates the static pressure distributions on the solid walls and in the channel, especially at the end region of the throat.展开更多
Sliding gate control system is widely employed in continuous casting process of steel to control flow rate of molten steel.As molten steel passes through a sliding gate,uneven flow develops.This will cause asymmetrica...Sliding gate control system is widely employed in continuous casting process of steel to control flow rate of molten steel.As molten steel passes through a sliding gate,uneven flow develops.This will cause asymmetrical distribution of flow and temperature field in mold consequently,formation of vortex near the nozzle and entrapment of CC powder into the molten steel.etc,which have negative effect on process productivity and product quality.To suppress the uneven flow,electromagnetic swirling flow has been proposed to impose on the flow in submerged entry nozzle below the sliding gate.In this study the uneven flow developed by incompletely open sliding gate and the suppression of this uneven flow using electromagnetic swirling flow are numerically studied in round billet continuous casting of steel process.The improvement of the flow and temperature filed in the submerged entry nozzle and mold are investigated.It is found that:The uneven velocity in nozzle can be suppressed by electromagnetic swirling flow,and the flow and temperature field in mold be improved obviously;With the increase of electromagnetic swirling intensity,the effect of uneven flow can be almost completely suppressed.展开更多
The purpose of this study is to establish the high-accurate prediction method of particle separation in a cyclone separator. Numerical simulation of the swirling flows in a cyclone separator is performed by using a la...The purpose of this study is to establish the high-accurate prediction method of particle separation in a cyclone separator. Numerical simulation of the swirling flows in a cyclone separator is performed by using a large eddy simulation (LES) based on a Smagorinsky model. The validity of the simulation and the complicated flow characteristics are discussed by comparison with experimental results. Moreover, particle motions are treated by a Lagrangian method and are calculated with a one-way method. A performance for particle separation is predicted from the results of the particle tracing. As results of our investigation, the influences of the inserted height of the outlet pipe on the performance for particle separation of cyclone separator are shown.展开更多
The oxidation reactor plays a key role in producing rutile titanium dioxide (TiO2) from vapor-phase titanium tetrachloride (TiCl4) by employing a swirling flow operation for enhanced gas mixing. This work aims to ...The oxidation reactor plays a key role in producing rutile titanium dioxide (TiO2) from vapor-phase titanium tetrachloride (TiCl4) by employing a swirling flow operation for enhanced gas mixing. This work aims to understand the effect of reactor configuration on the 3-D swirling flow field using computational fluid dynamics (CFD) simulation. Considering the anisotropic turbulence involved, the Reynolds stress model is applied to describe the complex swirling flow together with the cross-flow mixing of gases. The results show significant effect of the flow angle between the wall jet of air stream (representing TiCl4 in practice) and the axial direction on the initial flow field of cross-flow mixing, where 60° gives smooth profiles of axial velocity development while 90° may provide the fastest mixing between the jet and the axial bulk flow. The pipe shape for the reaction and developing zone, i.e., straight, expanding and shrinking, shows slight influence on the hydrodynamics.展开更多
基金Supported by the Special Funds for Major State Basic Research (No. G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.
文摘A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the performance of this model under the complex flow conditions caused by the presence of strong swirl which gives rise to both unconventional recirculation in the vicinity of the symmetry axis and strong anisotropy in the turbulence field. Comparison of the computational results are made both with the experimental data of Roback and Johnson and the computational results obtained with the typical isotropization of production model (IPM) and the k-∈ type Boussinesq viscosity model.
基金The project supported by the Special Funds for Major State Basic Research(G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.
文摘The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spite of the decay of circulation flux, a necessary condition for local circulation to amplify along downstream was obtained under the Boussinesq's hypothesis.
文摘The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling flow seems incorrect.
基金supported by Grants-in-Aid from the National Natural Science Research Foundation of China,No.30670517,10632010
文摘Object To elucidate the physiological significance of the spiral flow in the arterial system from the viewpoint of atherogenic lipid transport,an ex vivo experimental comparative
基金supported by Grants-in-Aid from the National Natural Science Foundation of China No.10632010,30670517
文摘The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce the risk of anastomotic thrombosis due to the size mismatch。
基金supported by Grant-in-Aid from the National Natural Science Foundation of China (10632010,11072023)
文摘Platelet concentration near the blood vessel wall is one of the major factors in the adhesion of platelets to the wall.In our previous studies,it was found that swirling flows could suppress platelet adhesion in small-caliber artificial grafts and end-to-end anastomoses.In order to better understand the beneficial effect of the swirling flow,we numerically analyzed the near-wall concentration distribution of platelets in a straight tube and a sudden tubular expansion tube under both swirling flow and normal flow conditions.The numerical models were created based on our previous experimental studies.The simulation results revealed that when compared with the normal flow,the swirling flow could significantly reduce the near-wall concentration of platelets in both the straight tube and the expansion tube.The present numerical study therefore indicates that the reduction in platelet adhesion under swirling flow conditions in small-caliber arterial grafts,or in end-to-end anastomoses as observed in our previous experimental study,was possibly through a mechanism of platelet transport,in which the swirling flow reduced the near-wall concentration of platelets.
文摘The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmetric disturbances The differental equations of zero-order and first-order disturbance module and governing equation of amplitude variation due to slowly divergent flow are derved The plaschko s equation for slowly divergent swirl-free jet has been extended to slowly divergent flow with swirlin the present study.
文摘This paper is concerned with water saving for water-loop cooling tower system in power plants. A newly developed water saving device of swirling flow is presented. The key point is that the new water saving device makes the steam swirl up along the device wall rather than engender laminar flow in a corrugated plate. The corrugated plate device can save approximately 10 percent of the total lost water. In contrast to the scale model of corrugated plate water saving device, experimental analyses have demonstrated that the new water saving device of swirling flow is more efficient, with a capacity of saving more than 20 percent of water.
文摘Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, experimental techniques such as 2D and/or 3D LDV (Laser Doppler Velocimetry) measurements provide only limited discrete information at given points; especially, for the cases of complex flows such as dump combustor swirling flows. For this type of flows, usual numerical interpolating schemes appear to be unsuitable. Recently, neural networks have emerged as viable means of expanding a finite data set of experimental measurements to enhance better understanding of a particular complex phenomenon. This study showed that generalized feed forward network is suitable for the prediction of turbulent swirling flow characteristics in a model dump combustor. These techniques are proposed for optimum designs of dump combustors and ramjet engines.
基金supported by the National Natural Science Foundation of China(Nos.12232002,12072017,12002199,and 11721202)。
文摘Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.
基金funded by the National Natural Science Foundation of China(Nos.51874215 and 52204351)the China Postdoctoral Science Foundation(2022M722487).
文摘A three-dimensional mathematical model has been established for a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. The discrete phase model and volume of fluid model were applied to simulate the gas–liquid multiphase flow behavior in tundish and nozzle. The effect of argon flow rate on the migration behavior of bubbles and interface behavior between steel and slag was also investigated. The presented results indicate that the novel coupling process can significantly change the flow pattern in the stream zone of a tundish, prolong the average residence time of liquid steel, and reduce the dead fraction. A complete annular gas curtain is formed around the stopper rod of tundish. Under the action of drag force of liquid steel, a part of small bubbles enter the nozzle through the swirling grooves and gather toward the center of the nozzle by centripetal force. As the argon flow rate increases, the volume fraction of argon gas entering the nozzle increases, which enhances the swirl intensity and increases the concentration of bubbles in the nozzle. To avoid the formation of slag open eye in tundish, the argon flow rate should not exceed 8 L min−1.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB610305)the National "111" Project of China (Grant No. B06024)the National Natural Science Foundation of China (Grant Nos. 10825210, 11072188)
文摘Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of jet flow structures with impinging distance is characterized using the technique of particle image velocimetry (PIV). Correspondingly, the distributions of wall pressure and heat transfer on the plate are measured. At sufficiently large impinging distances, without swirling flow, the obtained flow and wall pressure/heat transfer data are consistent with the classical observation for a conventional annular impinging jet, showing the transition from annular impinging jet flow to single circular impinging jet-like flow. In contrast, no such transition occurs in the presence of flow turning by short guide vanes. At short and intermediate impinging distances, flow turning causes more non-uniform distributions of wall pressure and heat transfer on the target plate and the local heat transfer rates higher than those of the conventional annular jet. This is attributed to the vortical flow structures shed and convected downstream from the short guide vanes. In sharp contrast, at large impinging distances, the larger momentum loss due to flow turning results in lower heat transfer rates on the plate.
文摘Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulentlength scale modification conception, we present two modified K-ε models. To investigate thebehaviour of the modified turbulence models, they are used to predict two representative turbulentswirling flows. The computational results, after compared with the experimental data, show that themodified K-ε models substantially improve the prediction of the standard K-ε model for theturbulent swirling flows.
基金financially supported by the National High Technical Research and Development Programme of China (No. 2009AA03Z530)the National Natural Science Foundation of China and Shanghai Baosteel (No. 50834010)+3 种基金the National Natural Science Foundation of China (Nos. 51174058, 51104047 and 51004035)111 Project (No. B07015)the Fundamental Research Funds for the Central Universities(No. N100409007)the Doctor Startup Foundation of Liaoning Province (No.20111009)
文摘In order to weaken the bias flow in the submerged entry nozzle (SEN) with slide- gate, the rotating magnetic field was imposed. The numerical method was employed to investigate the effect of rotating magnetic field on the flow field in the SEN and the mold under different slide-gate opening ratios. Numerical results showed that when the slide-gate opening ratio is smaller than 100%, the flow field in the SEN and the mold become asymmetry and there is an obvious circulation under the slide- gate in the SEN. With increasing exciting current, the divergent angle of liquid steel at the SEN outlet increases, the impact depth of liquid steel in the mold decreases. With increasing slide-gate opening ratio, the impact depth of liquid steel in the mold increases and the required exciting current to weaken the bias flow should increase.
基金supported by the National Natural Science Foundation of China(51579225)
文摘Flow measurement is important in the fluid process and transmission system. For the need of accuracy measure- ment of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may pro- duce swirling flow in the natural gas pipeline networks system and many other industry fields. In order to reveal the influence of upstream swirling flow on internal flow fields and the metrological characteristics, numerical si- mulations are carried out on the swirl meter. Using RNG k-e turbulent model and SIMPLE algorithm, the flow field is numerically simulated under swirling flows generated from co-swirl and counter-swirl flow. Simulation results show fluctuation is enhanced or weakened depending on the rotating direction of swirling flow. A coun- ter-swift flow increases the entropy production rate at the inlet and outlet of the swirler, the junction region between throat and divergent section, and then the pressure loss is increased. The vortex precession dominates the static pressure distributions on the solid walls and in the channel, especially at the end region of the throat.
基金Item Sponsored by The Central Universities(N100409010)Project for Key Laboratory of Liaoning Province(LS2010065)"111 project" of Northeastern University,China(B07015)
文摘Sliding gate control system is widely employed in continuous casting process of steel to control flow rate of molten steel.As molten steel passes through a sliding gate,uneven flow develops.This will cause asymmetrical distribution of flow and temperature field in mold consequently,formation of vortex near the nozzle and entrapment of CC powder into the molten steel.etc,which have negative effect on process productivity and product quality.To suppress the uneven flow,electromagnetic swirling flow has been proposed to impose on the flow in submerged entry nozzle below the sliding gate.In this study the uneven flow developed by incompletely open sliding gate and the suppression of this uneven flow using electromagnetic swirling flow are numerically studied in round billet continuous casting of steel process.The improvement of the flow and temperature filed in the submerged entry nozzle and mold are investigated.It is found that:The uneven velocity in nozzle can be suppressed by electromagnetic swirling flow,and the flow and temperature field in mold be improved obviously;With the increase of electromagnetic swirling intensity,the effect of uneven flow can be almost completely suppressed.
文摘The purpose of this study is to establish the high-accurate prediction method of particle separation in a cyclone separator. Numerical simulation of the swirling flows in a cyclone separator is performed by using a large eddy simulation (LES) based on a Smagorinsky model. The validity of the simulation and the complicated flow characteristics are discussed by comparison with experimental results. Moreover, particle motions are treated by a Lagrangian method and are calculated with a one-way method. A performance for particle separation is predicted from the results of the particle tracing. As results of our investigation, the influences of the inserted height of the outlet pipe on the performance for particle separation of cyclone separator are shown.
文摘The oxidation reactor plays a key role in producing rutile titanium dioxide (TiO2) from vapor-phase titanium tetrachloride (TiCl4) by employing a swirling flow operation for enhanced gas mixing. This work aims to understand the effect of reactor configuration on the 3-D swirling flow field using computational fluid dynamics (CFD) simulation. Considering the anisotropic turbulence involved, the Reynolds stress model is applied to describe the complex swirling flow together with the cross-flow mixing of gases. The results show significant effect of the flow angle between the wall jet of air stream (representing TiCl4 in practice) and the axial direction on the initial flow field of cross-flow mixing, where 60° gives smooth profiles of axial velocity development while 90° may provide the fastest mixing between the jet and the axial bulk flow. The pipe shape for the reaction and developing zone, i.e., straight, expanding and shrinking, shows slight influence on the hydrodynamics.