期刊文献+
共找到5,401篇文章
< 1 2 250 >
每页显示 20 50 100
Hydrogen Energy Storage System:Review on Recent Progress
1
作者 MilleniumWong Hadi Nabipour Afrouzi 《Energy Engineering》 EI 2025年第1期1-39,共39页
A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about com... A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use. 展开更多
关键词 Hydrogen energy storage system VOSViewer DESIGN REVIEW SIZING
在线阅读 下载PDF
Modeling and Capacity Configuration Optimization of CRH5 EMU On-Board Energy Storage System
2
作者 Mingxing Tian Weiyuan Zhang Zhaoxu Su 《Energy Engineering》 EI 2025年第1期307-329,共23页
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi... In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train. 展开更多
关键词 Electrified railway regenerative braking bi-level programming on-board energy storage power quality capacity configuration
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System
3
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Correlation Analysis of Power Quality and Power Spectrum in Wind Power Hybrid Energy Storage Systems
4
作者 Jian Gao Hongliang Hao +4 位作者 Caifeng Wen Yongsheng Wang Zhanhua Han Edwin E.Nykilla Yuwen Zhang 《Energy Engineering》 2025年第3期1175-1198,共24页
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship... Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications. 展开更多
关键词 Wind power generation hybrid energy storage power quality PSD NSGA-II
在线阅读 下载PDF
Study of Chilled Water Storage System in Subway Engineering:A Case Study of a Subway Station in Guangzhou
5
作者 Cen Li 《Journal of Architectural Research and Development》 2025年第1期58-66,共9页
Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.... Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects. 展开更多
关键词 Chilled water storage Subway station Hourly cooling load Peak-valley electricity price
在线阅读 下载PDF
Synthesis, characterizations, and applications of vacancies-containing materials for energy storage systems 被引量:1
6
作者 Jingjing Wang Yiguang Zhou +7 位作者 Junyi Li Lei Zhao Ying Zhu Yamei Wang Rui Wu Ying Wang Daniel John Blackwood Jun Song Chen 《DeCarbon》 2024年第1期67-80,共14页
Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems, such as secondary batteries, electrocatalysis, and supercapacitors. Because vacancies c... Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems, such as secondary batteries, electrocatalysis, and supercapacitors. Because vacancies can generateabundant localized electrons and unsaturated cations, the incorporation of vacancies will significantly improvethe electrical conductivity, ion migration, and provides additional active sites of energy storage materials. Thisarticle systematically reviews different methods to generate oxygen, nitrogen, or selenium vacancies, and techniques to characterize these vacancies. We summarize the specific roles that vacancies play for the active materials in each type of energy storage devices. Additionally, we provide insights into the research progress andchallenges associated with the future development of vacancies technology in various energy storage systems. 展开更多
关键词 VACANCIES Energy storage systems Electronic structure CONDUCTIVITY Ion migration
在线阅读 下载PDF
Optimization dispatching strategy for an energy storage system considering its unused capacity sharing
7
作者 Hejun Yang Zhaochen Yang +2 位作者 Siyang Liu Dabo Zhang Yun Yu 《Global Energy Interconnection》 EI CSCD 2024年第5期590-602,共13页
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small... In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving. 展开更多
关键词 Renewable energy Energy storage system Sharing energy storage Power system dispatching Peak shaving
在线阅读 下载PDF
Dynamic optimal allocation of energy storage systems integrated within photovoltaic based on a dual timescale dynamics model
8
作者 Kecun Li Zhenyu Huang +2 位作者 Youbo Liu Yaser Qudaih Junyong Liu 《Global Energy Interconnection》 EI CSCD 2024年第4期415-428,共14页
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations... Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs. 展开更多
关键词 Optimal allocation Profitability analysis PHOTOVOLTAIC Energy storage system Dual timescale dynamics model Spot market clearing
在线阅读 下载PDF
Modeling,Simulation,and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios
9
作者 Xiaohui Ye Fucheng Tan +4 位作者 Xinli Song Hanyang Dai Xia Li Shixia Mu Shaohang Hao 《Energy Engineering》 EI 2024年第12期3689-3710,共22页
Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy s... Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system(BESS).However,the current modeling of grid-connected BESS is overly simplistic,typically only considering state of charge(SOC)and power constraints.Detailed lithium(Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions.Additionally,there is a lack of real-time batteries risk assessment frameworks.To address these issues,in this study,we establish a thermal-electric-performance(TEP)coupling model based on a multitime scale BESS model,incorporating the electrical and thermal characteristics of Li-ion batteries along with their performance degradation to achieve detailed simulation of grid-connected BESS.Additionally,considering the operating characteristics of energy storage batteries and electrical and thermal abuse factors,we developed a battery pack operational riskmodel,which takes into account SOCand charge-discharge rate(Cr),using amodified failure rate to represent the BESS risk.By integrating detailed simulation of energy storage with predictive failure risk analysis,we obtained a detailed model for BESS risk analysis.This model offers a multi-time scale integrated simulation that spans month-level energy storage simulation times,day-level performance degradation,minutescale failure rate,and second-level BESS characteristics.It offers a critical tool for the study of BESS.Finally,the performance and risk of energy storage batteries under three scenarios—microgrid energy storage,wind power smoothing,and power grid failure response—are simulated,achieving a real-time state-dependent operational risk analysis of the BESS. 展开更多
关键词 Grid-connected battery energy storage system thermal-electric-performance coupling model operational risk model failure rate risk analysis
在线阅读 下载PDF
Optimal Multi-Timescale Scheduling of Integrated Energy Systems with Hybrid Energy Storage System Based on Lyapunov Optimization
10
作者 Yehui Ma Dong Han Zhuoxin Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期465-480,共16页
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th... The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES. 展开更多
关键词 integrated energy systems multiple time scales hybrid energy storage systems Lya-punov optimization
在线阅读 下载PDF
Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics
11
作者 Junhui Li Haotian Zhang +4 位作者 Cuiping Li Xingxu Zhu Ruitong Liu Fangwei Duan Yongming Peng 《Energy Engineering》 EI 2024年第2期291-313,共23页
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order... In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%. 展开更多
关键词 Hydrogen storage system simulation modeling ELECTROLYZER fuel cell capacity loss
在线阅读 下载PDF
Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization
12
作者 Zaihe Yang Shuling Wang +3 位作者 Runhang Zhu Jiao Cui Ji Su Liling Chen 《Energy Engineering》 EI 2024年第3期807-820,共14页
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ... To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems. 展开更多
关键词 Multi-stage robust optimization energy storage system regulation methods output uncertainty
在线阅读 下载PDF
Energy Storage Systems Technologies, Evolution and Applications
13
作者 Olushola Aina 《Energy and Power Engineering》 2024年第2期97-119,共23页
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink... Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application. 展开更多
关键词 Energy storage systems Renewable Energy Sources Power Electronic Interface (PEI) Applications of Energy storages
在线阅读 下载PDF
Optimal scheduling of zero-carbon park considering variational characteristics of hydrogen energy storage systems 被引量:1
14
作者 Jun Yin Heping Jia +3 位作者 Laijun Chen Dunnan Liu Shengwei Mei Sheng Wang 《Global Energy Interconnection》 EI CSCD 2024年第5期603-615,共13页
Zero-carbon parks have broad prospects in carbon neutralization.As an energy hub,hydrogen energy storage plays an important role in zero-carbon parks.However,the nonlinear characteristics of hydrogen energy storage sy... Zero-carbon parks have broad prospects in carbon neutralization.As an energy hub,hydrogen energy storage plays an important role in zero-carbon parks.However,the nonlinear characteristics of hydrogen energy storage systems(HESSs)have a significant impact on the system economy.Therefore,considering the variable working condition characteristics of HESSs,a hybrid operation method is proposed for HESS,to support the efficient and economic operation of zero-carbon parks,By analyzing the operating principle of a zero-carbon park with HESS,the system structure framework and variable condition linearization model of the equipment in HESS are established.Moreover,considering the energy output characteristics of hydrogen energy storage equipment under variable working conditions,a multimodule hybrid operation strategy is proposed for electrolytic and fuel cells,effectively meeting the thermoelectric load demand of zero-carbon parks in different scenarios.Finally,the economy of the proposed hybrid operation strategy was verified in typical scenarios,using a zero-carbon park embedded with a HESS. 展开更多
关键词 Zero-carbon park Variational characteristics Hydrogen energy storage Hybrid operation
在线阅读 下载PDF
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems 被引量:1
15
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 Wind power system entropy production system losses power quality indexes battery energy storage
在线阅读 下载PDF
Optimal hydrogen-battery energy storage system operation in microgrid with zero-carbon emission
16
作者 Huayi Wu Zhao Xu Youwei Jia 《Global Energy Interconnection》 EI CSCD 2024年第5期616-628,共13页
To meet the greenhouse gas reduction targets and address the uncertainty introduced by the surging penetration of stochastic renewable energy sources,energy storage systems are being deployed in microgrids.Relying sol... To meet the greenhouse gas reduction targets and address the uncertainty introduced by the surging penetration of stochastic renewable energy sources,energy storage systems are being deployed in microgrids.Relying solely on short-term uncertainty forecasts can result in substantial costs when making dispatch decisions for a storage system over an entire day.To mitigate this challenge,an adaptive robust optimization approach tailored for a hybrid hydrogen battery energy storage system(HBESS)operating within a microgrid is proposed,with a focus on efficient state-of-charge(SoC)planning to minimize microgrid expenses.The SoC ranges of the battery energy storage(BES)are determined in the day-ahead stage.Concurrently,the power generated by fuel cells and consumed by electrolysis device are optimized.This is followed by the intraday stage,where BES dispatch decisions are made within a predetermined SoC range to accommodate the uncertainties realized.To address this uncertainty and solve the adaptive optimization problem with integer recourse variables in the intraday stage,we proposed an outer-inner column-and-constraint generation algorithm(outer-inner-CCG).Numerical analyses underscored the high effectiveness and efficiency of the proposed adaptive robust operation model in making decisions for HBESS dispatch. 展开更多
关键词 MICROGRID Hybrid hydrogen-battery storage Outer-inner column-and-constraint generation algorithm Adaptive robust optimization Integer recourse variables
在线阅读 下载PDF
Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources
17
作者 Saif Serag Adil Echchelh Biagio Morrone 《Energy Engineering》 EI 2024年第10期2719-2741,共23页
Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system e... Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future. 展开更多
关键词 Energy storage HYDROPOWER HYDROGEN renewable energy hybrid system
在线阅读 下载PDF
Market Operation of Energy Storage System in Smart Grid:A Review
18
作者 Li Deng Jiafei Huan +7 位作者 Wei Wang Weitao Zhang Liangbin Xie Lun Dong Jingrong Guo Zhongping Li Yuan Huang Yue Xiang 《Energy Engineering》 EI 2024年第6期1403-1437,共35页
As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts... As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage. 展开更多
关键词 Energy storage operation MARKETIZATION scheduling management national-branch-provincial local dispatch
在线阅读 下载PDF
Optimal Maintenance Policy for a Storage System with Finite Number of Inspections
19
作者 潘郁 伊藤弘道 +1 位作者 中川覃夫 达庆利 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期22-25,共4页
The expected cost per unit of time for a sequential inspection policy is derived. It still has some difficulties to compute an optimal sequential policy numerically, which minimizes the expected cost of a system with ... The expected cost per unit of time for a sequential inspection policy is derived. It still has some difficulties to compute an optimal sequential policy numerically, which minimizes the expected cost of a system with finite number of inspections. This paper gives the algorithm for an optimal inspection schedule and specifies the computing procedure for a Weibull distribution. Using this algorithm, optimal inspection times are computed as a numerical result. Compared with the periodic point inspection, the policies in this paper reduce the cost successfully. 展开更多
关键词 storage system sequential inspection optimal time sequence
在线阅读 下载PDF
Distributed Cooperative Control of Battery Energy Storage Systems in DC Microgrids 被引量:8
20
作者 Tingyang Meng Zongli Lin Yacov A.Shamash 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期606-616,共11页
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ... The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results. 展开更多
关键词 Cooperative control energy storage systems MICROGRIDS multi-agent systems
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部