The static pressure recovery of low-pressure exhaust hood is important for the overall effectiveness of steam turbines.The tubular and plate stiffeners inside the exhaust contribute to the structural safety of exhaust...The static pressure recovery of low-pressure exhaust hood is important for the overall effectiveness of steam turbines.The tubular and plate stiffeners inside the exhaust contribute to the structural safety of exhaust,which affect the aerodynamic performance.Given the complicated exhaust model coupled with the last stage of turbine,this paper intends to investigate the aerodynamic performance of exhaust hood with individual stiffeners using highfidelity numerical simulations in order to figure out the corresponding effects.The results show that(1)the types of stiffeners have different effects on the aerodynamic performance;and(2)different installation positions and types of plate stiffeners have different effects on aerodynamic performance.The above investigations highlight the future demand regarding reasonable layout and quantity of stiffeners to improve the aerodynamic performance of exhaust as well as maintaining the structural safety.展开更多
Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length...Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT.The objective of this research is to propose and assess fitted energy promoters(EPs)to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.After experimental assessment,the work has been extended to cover more cases by numerical investigations on bare,bare aggressive,and aggressive with energy promoters S-shaped diffusers.Three types of EPs,namely co-rotating low-profile,co-rotating streamline sheet,and trapezoidal submerged EPs were tested with various combinations over a range of Reynolds numbers from 40,000 to 75,000.The respective S-shaped diffusers were simulated by computational fluid dynamics(CFD)using ANSYS software adopting a steady,3D,standard k-εturbulence model to acquire the details of the flow structure,which cannot be visualized in the experiment.The diffuser performance has been evaluated by the performance indicators of static pressure recovery coefficient,total pressure loss coefficient,and distortion coefficient(DC(45°)).The enhancements in the static pressure recovery of the S-shaped aggressive diffuser with energy promoters are 19.5%,22.2%,and 24.5%with EPs at planes 3,4 and 5,respectively,compared to the aggressive bare diffuser.In addition,the installation of the EPs resulted in a DC(45°)reduction at the outlet plane of the diffuser of about 43%at Re=40,000.The enhancements in the performance parameters confirm that aggravating the internal flow eliminates the flow separation and enhances the GT intake efficiency.展开更多
This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and...This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and the assumption of a circumferentially uniform flow at the design condition, a corrected method for volute design is adopted. By means of this method, corresponding to five geometric parameters affecting the volute overall performance, ten volute cases are designed. Secondly, the numerical simulation is employed and the detailed flow field and losses in different volutes with different geometric parameters are analyzed. The numerical investigation reveals that in all of the five geometric parameters, the radial location of the cross-section has the strongest influence on the performance of the volute. The non-uniform volute inlet formed by the upward vaned diffuser outlet flow is another important factor. Finally a relatively better value of D1/D2 is concluded.展开更多
基金National Natural Science Foundation of China(52005074)Natural Science Foundation of Liaoning Province(2022-MS-135)。
文摘The static pressure recovery of low-pressure exhaust hood is important for the overall effectiveness of steam turbines.The tubular and plate stiffeners inside the exhaust contribute to the structural safety of exhaust,which affect the aerodynamic performance.Given the complicated exhaust model coupled with the last stage of turbine,this paper intends to investigate the aerodynamic performance of exhaust hood with individual stiffeners using highfidelity numerical simulations in order to figure out the corresponding effects.The results show that(1)the types of stiffeners have different effects on the aerodynamic performance;and(2)different installation positions and types of plate stiffeners have different effects on aerodynamic performance.The above investigations highlight the future demand regarding reasonable layout and quantity of stiffeners to improve the aerodynamic performance of exhaust as well as maintaining the structural safety.
文摘Size reduction of the gas turbines(GT)by reducing the inlet S-shaped diffuser length increases the powerto-weight ratio.It improves the techno-economic features of the GT by lesser fuel consumption.However,this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT.The objective of this research is to propose and assess fitted energy promoters(EPs)to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.After experimental assessment,the work has been extended to cover more cases by numerical investigations on bare,bare aggressive,and aggressive with energy promoters S-shaped diffusers.Three types of EPs,namely co-rotating low-profile,co-rotating streamline sheet,and trapezoidal submerged EPs were tested with various combinations over a range of Reynolds numbers from 40,000 to 75,000.The respective S-shaped diffusers were simulated by computational fluid dynamics(CFD)using ANSYS software adopting a steady,3D,standard k-εturbulence model to acquire the details of the flow structure,which cannot be visualized in the experiment.The diffuser performance has been evaluated by the performance indicators of static pressure recovery coefficient,total pressure loss coefficient,and distortion coefficient(DC(45°)).The enhancements in the static pressure recovery of the S-shaped aggressive diffuser with energy promoters are 19.5%,22.2%,and 24.5%with EPs at planes 3,4 and 5,respectively,compared to the aggressive bare diffuser.In addition,the installation of the EPs resulted in a DC(45°)reduction at the outlet plane of the diffuser of about 43%at Re=40,000.The enhancements in the performance parameters confirm that aggravating the internal flow eliminates the flow separation and enhances the GT intake efficiency.
文摘This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and the assumption of a circumferentially uniform flow at the design condition, a corrected method for volute design is adopted. By means of this method, corresponding to five geometric parameters affecting the volute overall performance, ten volute cases are designed. Secondly, the numerical simulation is employed and the detailed flow field and losses in different volutes with different geometric parameters are analyzed. The numerical investigation reveals that in all of the five geometric parameters, the radial location of the cross-section has the strongest influence on the performance of the volute. The non-uniform volute inlet formed by the upward vaned diffuser outlet flow is another important factor. Finally a relatively better value of D1/D2 is concluded.