期刊文献+
共找到877,263篇文章
< 1 2 250 >
每页显示 20 50 100
The Empirical Analysis on the Dynamic Effect of Rural-urban Migration on the Consumption Growth of Residents in China——Based on Varying Parameter State-space Model 被引量:1
1
作者 邹小芳 《Agricultural Science & Technology》 CAS 2016年第2期471-475,共5页
The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure... The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure. The results showed that urban consumption growth made the most contribution to aggregate consumption growth, followed by urban-rural migration caused consumption. The role of rural consumption growth kept stable, but consumption caused by population growth was decreasing. Therefore, China consumption growth mainly relies on urban consumption expenditure and urban-rural migration. 展开更多
关键词 Rural-urban migration Household consumption expenditure URBANIZATION state-space model
在线阅读 下载PDF
An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model 被引量:1
2
作者 XIANG Sheng CHENG Bin +1 位作者 ZHANG Feng-yu TANG Miao 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期682-696,共15页
The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the ... The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions. 展开更多
关键词 floating bridge time domain analysis dynamic analysis state-space model environmental load
在线阅读 下载PDF
Recursive State-space Model Identification of Non-uniformly Sampled Systems Using Singular Value Decomposition 被引量:2
3
作者 王宏伟 刘涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1268-1273,共6页
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co... In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method. 展开更多
关键词 Non-uniformly sampling system state-space model IDENTIFICATION SINGULAR value decomposition RECURSIVE algorithm
在线阅读 下载PDF
A Study on the Factors Influencing the Income Gap between Urban and Rural Areas Based on State-space Model 被引量:2
4
作者 Xiaofang ZOU Xueqin JIANG 《Asian Agricultural Research》 2014年第9期1-6,共6页
The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financi... The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financial development scale and financial development efficiency have the greatest impact on the income gap between urban and rural areas. By cointegration test,it is found that there is a long-term equilibrium relationship between these five variables and the income gap between urban and rural areas. We build the state-space model to research the dynamic impact of these factors on the income gap between urban and rural areas. The results show that by improving the level of urbanization,we can effectively narrow the income gap between urban and rural areas,while socio-economic development,the improvement of education level,expansion of financial development scale and financial development efficiency all significantly expand the income gap between urban and rural areas. 展开更多
关键词 INCOME GAP BETWEEN URBAN and RURAL areas State-spa
在线阅读 下载PDF
Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems
5
作者 Juuso T. Olkkonen Hannu Olkkonen 《Journal of Signal and Information Processing》 2011年第4期287-291,共5页
This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation.... This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms. 展开更多
关键词 state-space modelLING DYNAMIC SYSTEM Analysis EEG
在线阅读 下载PDF
PEMFC Identification Based on a Fractional-Order Hammerstein State-Space Model with ADE-BH Optimization
6
作者 Qin Hao Qi Zhidong +1 位作者 Ye Weiqin Sun Chengshuo 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期155-164,共10页
Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to ... Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process. 展开更多
关键词 PEMFC Hammerstein model Fractional subspace identification ADE-BH optimization
在线阅读 下载PDF
Improved State-space Modelling for Microgrids Without Virtual Resistances
7
作者 Paranagamage S.A.Peiris Shaahin Filizadeh Dharshana Muthumuni 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期584-596,共13页
Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the n... Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the network and converters.Virtual resistors have been widely used in existing models to generate a voltage for state-space models of the network that require voltage inputs.This paper accurately quantifies the adverse impacts of adding the virtual resistance and proposes an alternative method for network modelling that eliminates the requirement of the virtual resistor when interfacing converters with microgrids.The proposed nonlinear method allows initialization,time-domain simulations of the nonlinear model,and linearization and eigenvalue generation.A numerically linearized small-signal model is used to generate eigenvalues and is compared with the eigenvalues generated using the existing modelling method with virtual resistances.Deficiencies of the existing method and improvements offered by the proposed modelling method are clearly quantified.Electromagnetic transient(EMT)simulations using detailed switching models are used for validation of the proposed modelling method. 展开更多
关键词 Low-voltage converter state-space modelling dynamic phasor time-domain simulation eigenvalue analysis
原文传递
Tracking of time-evolving sound speed profiles with an auto-regressive state-space model 被引量:4
8
作者 JIN Liling LI Jianlong XU Wen 《Chinese Journal of Acoustics》 CSCD 2017年第3期302-312,共11页
An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equ... An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equation for predicting the time-evolving sound speed profile and a measurement equation for incorporating local acoustic measurements. In the paper, auto-regression (AR) method is introduced to obtain a high-order AR evolution model of the sound speed field time variations, and the ensemble Kalman filter is utilized to track the sound speed field. To validate the approach, the accuracy in sound speed estimation is analyzed via a numerical implementation using the ASIAEX experimental environment and the sound velocity measurement data. Compared with traditional approaches based on the state evolution represented as a random walk, simulation results show the proposed AR method can effectively reduce the tracking errors of sound speed, and still keep good tracking performance at low signal-to-noise ratios. 展开更多
关键词 TIME Tracking of time-evolving sound speed profiles with an auto-regressive state-space model SSP ENKF AR
原文传递
STATE-SPACE MODELLING OF DYNAMIC SYSTEMS IN OCEAN ENGINEERING 被引量:2
9
作者 JohannesFalnes 《Journal of Hydrodynamics》 SCIE EI CSCD 1998年第1期1-17,共17页
Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems... Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems in ocean engineering wave forces may be represented by convolution integrals. The paper presents a method to construct a finite-order state-space model which represents a good approximation to such a convolution integral. The method utilizes a particular algorithm to compute the partial derivative of the exponential function of a (state-space) matrix with respect to the matrix elements. The method is applied to an example of fitting a state space model of order five to the free oscillations corresponding to wave radiation in a transient experiment with an oscillating water column. 展开更多
关键词 wave forces SIMULATION state-space model least-square method oscillating water column heave motion
全文增补中
Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method 被引量:9
10
作者 Zhiyu NI Jinguo LIU +1 位作者 Zhigang WU Xinhui SHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期513-530,共18页
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model fo... The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method. 展开更多
关键词 Flexible space manipulator LINEARIZATION PARAMETER IDENTIFICATION state-space model SUBSPACE methods
原文传递
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
11
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
Dynamics of a Stochastic Epidemic Model with Age-group
12
作者 LAN Xiaomin CHEN Guangmin +5 位作者 ZHOU Ruiyang ZHENG Kuicheng CAI Shaojian WEI Fengying JIN Zhen MAO Xuerong 《应用数学》 北大核心 2025年第1期294-307,共14页
A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,t... A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases. 展开更多
关键词 Epidemic model Age groups PERSISTENCE EXTINCTION
在线阅读 下载PDF
Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders:progress of experimental models based on disease pathogenesis
13
作者 Li Xu Huiming Xu Changyong Tang 《Neural Regeneration Research》 SCIE CAS 2025年第2期354-365,共12页
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem... Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials. 展开更多
关键词 AQUAPORIN-4 experimental model neuromyelitis optica spectrum disorder PATHOGENESIS
在线阅读 下载PDF
Modeling and sliding mode control based on inverse compensation of piezo-positioning system
14
作者 LI Zhi-bin XIN Yuan-ze +1 位作者 ZHANG Jian-qiang SUN Chong-shang 《中国光学(中英文)》 北大核心 2025年第1期170-185,共16页
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis... In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system. 展开更多
关键词 piezo-positioning system hysteresis nonlinearity Hammerstein model Prandtl-Ishlinskii(P-I)model system identification sliding mode control
在线阅读 下载PDF
Solar flare forecasting based on a Fusion Model
15
作者 YiYang Li ShiYong Huang +4 位作者 SiBo Xu ZhiGang Yuan Kui Jiang QiYang Xiong RenTong Lin 《Earth and Planetary Physics》 EI CAS 2025年第1期171-181,共11页
Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model... Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model. 展开更多
关键词 solar flare pace weather deep learning Fusion model
在线阅读 下载PDF
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
16
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 Channel attention SENET model engine misfire fault fault detection
在线阅读 下载PDF
Comparative Analysis of ARIMA and NNAR Models for Time Series Forecasting
17
作者 Ghadah Alsheheri 《Journal of Applied Mathematics and Physics》 2025年第1期267-280,共14页
This paper presents a comparative study of ARIMA and Neural Network AutoRegressive (NNAR) models for time series forecasting. The study focuses on simulated data generated using ARIMA(1, 1, 0) and applies both models ... This paper presents a comparative study of ARIMA and Neural Network AutoRegressive (NNAR) models for time series forecasting. The study focuses on simulated data generated using ARIMA(1, 1, 0) and applies both models for training and forecasting. Model performance is evaluated using MSE, AIC, and BIC. The models are further applied to neonatal mortality data from Saudi Arabia to assess their predictive capabilities. The results indicate that the NNAR model outperforms ARIMA in both training and forecasting. 展开更多
关键词 Time Series QRIMQ model Neutral Network NNAR model
在线阅读 下载PDF
Comparative Study of the Malthusian Population Model and the Logistic Population Model for Bangladesh
18
作者 Md. Showkat Akber Khandoker Nasrin Ismet Ara Md. Sabbir Alam 《Applied Mathematics》 2025年第2期169-182,共14页
Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming year... Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models. 展开更多
关键词 Malthusian Population model Logistic Population model Population Growth Carrying Capacity
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models
19
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Spatial Modeling of COVID-19 Occurrence and Vaccination Rate across Counties in Ohio State from Jan. 2020 to April 2023
20
作者 Olawale Oluwafemi Oluwaseun Ibukun +3 位作者 Yaw Kwarteng Kehinde Adebowale Yahaya Danjuma Samson Mela 《Journal of Geographic Information System》 2025年第1期80-96,共17页
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ... The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area. 展开更多
关键词 COVID-19 Prevalence COVID-19 Vaccination OHIO Spatial Lag model Spatial Error model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部