In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based ...In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Despite its utility in identifying patterns in celestial objects, the Hertzsprung-Russell diagram is not supported in dim or small stars;it struggles to provide insights into certain celestial objects such as brown dw...Despite its utility in identifying patterns in celestial objects, the Hertzsprung-Russell diagram is not supported in dim or small stars;it struggles to provide insights into certain celestial objects such as brown dwarfs [1]. The purpose of this experiment is to create an improved version of the diagram with a three-dimensional model that includes a third z-axis to accurately predict and chart the life cycles of all stars regardless of size. The values of the stars’ absolute magnitude and color indices were used to chart the surface gravity and metallicity, variables that were chosen due to their ease of collection and their likeliness to be within the range of values being assessed. To obtain the values for the model, data points from the database GAIA DR2 were utilized via the TAP protocol to query the SQL database. The data was transferred into a local CSV file to facilitate data manipulation. The data could be read and interpreted, as dim stars would likely have higher values of these variables, making it easier to include them in the diagram. The Pandas DataFrames tool on Python 3 was used to organize and manage the data efficiently. Matplotlib Graphs visualized the relationships between different stellar attributes by developing a linear regression line and an algorithm and creating scatter plots and sky maps to explore trends, hence designing three-dimensional diagrams. It was determined that the surface gravity diagram had a higher efficacy than metallicity due to their standard deviations of 0.4641441715272741 and 0.786577627976148, respectively.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an ...The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair uu¯or dd¯, in loop(s) involving gluons. The chi...We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair uu¯or dd¯, in loop(s) involving gluons. The chiral anomaly of QCD and the spontaneously broken symmetry are invoked to explain the non-conservation of the axion current. From the coupling form factors, the axion emissivities ϵacan be derived, from which fluxes can be determined. We predict a photon flux, which may be detectable by Fermi LAT, and limits on the QCD mass ma. In this model, axions decay to gamma rays in a 2-photon vertex. We may determine the expected fluxes from the theoretical emissivity. The sensitivity curve from the Fermi Large Area Telescope (Fermi LAT) would allow axion mass constraints for neutron stars as low as ma≤10−14eV 95% C.L. Axions could thus be detectable in gamma rays for neutron stars as distant as 100 kpc. A signal from LIGO GWS 170817 could be placed from the NS-NS merger, which gives an upper limit of ma≤10−10eV.展开更多
Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to...Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.展开更多
Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influe...Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.展开更多
Streptococcus pneumoniae is a known notorious cause of invasive pneumococcal diseases as well as asymptomatic host carriage. Efforts have been made to curb this infectious organism through various vaccine strategies. ...Streptococcus pneumoniae is a known notorious cause of invasive pneumococcal diseases as well as asymptomatic host carriage. Efforts have been made to curb this infectious organism through various vaccine strategies. However, its several strains and serotypes have necessitated various vaccine schedules and updates in the USA and globally. The evolution in pneumococcal vaccine schedules is not without challenges, such as cost, vaccine hesitancy, uptake and global disparities. This narrative review synopsizes the history of the Pneumococcal Vaccine and changes in its schedules in the last two decades based on published data. We focused on the impact of pneumococcal vaccination on invasive pneumococcal diseases, historical limitations, current challenges and future directions. Despite advancements in vaccination against S. pneumoniae infections, some pertinent issues exist that need to be swiftly fixed, to reduce national and thus global burden of pneumococcal diseases.展开更多
Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role...Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.展开更多
A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(da...A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500.展开更多
The Bijigou intrusion is one of the largest and most well-differentiated Fe–Ti oxide-bearing layered intrusions in the Hannan massif located in the northwestern margin of the Yangtze Block,South China.Besides the min...The Bijigou intrusion is one of the largest and most well-differentiated Fe–Ti oxide-bearing layered intrusions in the Hannan massif located in the northwestern margin of the Yangtze Block,South China.Besides the mineralization-related mafic-ultramafic rocks,the intermediate-acid intrusive rocks are also exposed in the mining area,which is of great significance for the understanding the Neoproterozoic tectonic evolution of the Yangtze Block,but studies on these intermediate-acid rocks are scarce.The Bijigou mafic-ultramafic layered intrusion is surrounded by granite and cut by syenite veins.Here,we report new zircon U-Pb ages,Lu-Hf isotope composition and bulk rock geochemical data of the Bijigou syenite vein and wall-rock granite in the northwestern margin of the Yangtze Block.Laser ablation inductively coupled plasma mass spectrometry(LAICP-MS)zircon U-Pb dating results show that the Bijigou syenite vein and wall-rock granite formed at 770±3.5 Ma(MSWD=0.17,n=28)and 810±4 Ma(MSWD=0.84,n=26),respectively.The zirconεHf(t)values of the syenite veins range from+1.52 to+5.33(average of+3.05),combined with its high potassium contents,negative Nb–Ta anomalies and positive Pb anomalies,suggesting that they may have originated from mantle-derived basaltic magma,which was modified by materials from subducting oceanic slab.The zirconεHf(t)and T_(DM2)ages of the wall-rock granite range from+0.71 to+5.71(average+3.06)and 1344 to 1659 Ma(average 1519 Ma),respectively,indicating that the granite was produced by partial melting of juvenile crust.The geochemical characteristics of the Bijigou syenite and granite indicate that they were formed in a continental margin arc setting.Thus,combined with previous studies,it suggests that there was a major subduction system along the northwestern margin of the Yangtze Block during 824-720 Ma,and the magmatism in the Hannan massif was divided into two episodes:(1)early magmatism(824-790 Ma),such as the Bijigou,Hongmiaozhen and Huangguanzhen granitoids,was derived from partial melting of the juvenile or pre-existing crust in a continental arc setting;(2)later magmatism(789-718 Ma),including Bijigou syenite,Wudumen,Erliba and Zushidian granitoids,formed in a subduction-related back-arc extensional environment.The long-term subduction system along the northwestern margin of the Yangtze Block during 824-720 Ma suggests that the Yangtze Block was previously located at the periphery of the Rodinia supercontinent.展开更多
The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history...The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history of the Earth.Detailed petrography,mineral chemistry,metamorphic evolution and zircon U-Pb dating are presented for felsic granulite and two-pyroxene granulite from the Yishui complex to contribute to new insights into the Neoarchean tectonic evolution of the North China Craton.Three mineral assemblages are recognized for these granulite samples,including the prograde(M1),peak(M2)and retrograde(M3)mineral assemblages.Conventional geothermobarometry and phase equilibrium modeling yield P-T conditions of 6.5-10.9 kbar/718-839℃ for the peak metamorphism,which define a medium-pressure granulite-facies metamorphism occurred at middle to lower crust.Anticlockwise P-T paths with near-isobaric cooling(IBC)retrograde segments were reconstructed.Zircon LA-ICP-MS U-Pb dating suggests that the protolith of the felsic granulite was emplaced at 2541±7 Ma and the subsequent medium-pressure granulite-facies metamorphism occurred at 2518-2494 Ma.A two-stage mantle plume related crustal-scale sagduction geodynamic regime is proposed in the western Shandong terrane in the Neoarchean.展开更多
We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,w...We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,where agents draw samples from their neighbors and then update their strategies based on conformity or inference according to the situation in the sample.Based on these assumptions,we present the state transition equations in the dynamic evolution of population cooperation,conduct simulation analysis on lattice networks and scale-free networks,and discuss how this mechanism affects the evolution of cooperation and how cooperation evolves under different levels of conformity in the network.Our simulation results show that blindly imitating the strategies of neighbors does not necessarily lead to rapid consensus in the population.Instead,rational inference through samples can better promote the evolution of the same strategy among all agents in the population.Moreover,the simulation results also show that a smaller sample size cannot reflect the true situation of the neighbors,which has a large randomness,and the size of the benefits obtained in cooperation determines the direction of the entire population towards cooperation or defection.This work incorporates the conforming behavior of agents into the game,uses the method of sampling for strategy updates and enriches the theory of evolutionary games with a more realistic significance.展开更多
Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under ...Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.展开更多
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b...Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.10603002 and 10773004)
文摘In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
文摘Despite its utility in identifying patterns in celestial objects, the Hertzsprung-Russell diagram is not supported in dim or small stars;it struggles to provide insights into certain celestial objects such as brown dwarfs [1]. The purpose of this experiment is to create an improved version of the diagram with a three-dimensional model that includes a third z-axis to accurately predict and chart the life cycles of all stars regardless of size. The values of the stars’ absolute magnitude and color indices were used to chart the surface gravity and metallicity, variables that were chosen due to their ease of collection and their likeliness to be within the range of values being assessed. To obtain the values for the model, data points from the database GAIA DR2 were utilized via the TAP protocol to query the SQL database. The data was transferred into a local CSV file to facilitate data manipulation. The data could be read and interpreted, as dim stars would likely have higher values of these variables, making it easier to include them in the diagram. The Pandas DataFrames tool on Python 3 was used to organize and manage the data efficiently. Matplotlib Graphs visualized the relationships between different stellar attributes by developing a linear regression line and an algorithm and creating scatter plots and sky maps to explore trends, hence designing three-dimensional diagrams. It was determined that the surface gravity diagram had a higher efficacy than metallicity due to their standard deviations of 0.4641441715272741 and 0.786577627976148, respectively.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金Funded by Chinese National Natural Science Foundation of China(No.U2006224)。
文摘The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).
文摘We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair uu¯or dd¯, in loop(s) involving gluons. The chiral anomaly of QCD and the spontaneously broken symmetry are invoked to explain the non-conservation of the axion current. From the coupling form factors, the axion emissivities ϵacan be derived, from which fluxes can be determined. We predict a photon flux, which may be detectable by Fermi LAT, and limits on the QCD mass ma. In this model, axions decay to gamma rays in a 2-photon vertex. We may determine the expected fluxes from the theoretical emissivity. The sensitivity curve from the Fermi Large Area Telescope (Fermi LAT) would allow axion mass constraints for neutron stars as low as ma≤10−14eV 95% C.L. Axions could thus be detectable in gamma rays for neutron stars as distant as 100 kpc. A signal from LIGO GWS 170817 could be placed from the NS-NS merger, which gives an upper limit of ma≤10−10eV.
文摘Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.
文摘Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.
文摘Streptococcus pneumoniae is a known notorious cause of invasive pneumococcal diseases as well as asymptomatic host carriage. Efforts have been made to curb this infectious organism through various vaccine strategies. However, its several strains and serotypes have necessitated various vaccine schedules and updates in the USA and globally. The evolution in pneumococcal vaccine schedules is not without challenges, such as cost, vaccine hesitancy, uptake and global disparities. This narrative review synopsizes the history of the Pneumococcal Vaccine and changes in its schedules in the last two decades based on published data. We focused on the impact of pneumococcal vaccination on invasive pneumococcal diseases, historical limitations, current challenges and future directions. Despite advancements in vaccination against S. pneumoniae infections, some pertinent issues exist that need to be swiftly fixed, to reduce national and thus global burden of pneumococcal diseases.
基金partially supported by U.S.National Science Foundation grants EAR1925965 and RISE-2425889support from the European Research Council under the European Union Horizon 2020 research and innovation program(grant agreement no.742335,FIMAGE)。
文摘Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.
基金Natural science foundation of Inner Mongolia(2024LHMS06018)The basic scientific research funding for directly affiliated universities in the Inner Mongolia(JY20250094)。
文摘A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500.
基金jointly supported financially by the National Natural Science Foundation of China(No.41603040)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-YB-239)Fundamental Research Funds for the Central Universities(S202310710204)。
文摘The Bijigou intrusion is one of the largest and most well-differentiated Fe–Ti oxide-bearing layered intrusions in the Hannan massif located in the northwestern margin of the Yangtze Block,South China.Besides the mineralization-related mafic-ultramafic rocks,the intermediate-acid intrusive rocks are also exposed in the mining area,which is of great significance for the understanding the Neoproterozoic tectonic evolution of the Yangtze Block,but studies on these intermediate-acid rocks are scarce.The Bijigou mafic-ultramafic layered intrusion is surrounded by granite and cut by syenite veins.Here,we report new zircon U-Pb ages,Lu-Hf isotope composition and bulk rock geochemical data of the Bijigou syenite vein and wall-rock granite in the northwestern margin of the Yangtze Block.Laser ablation inductively coupled plasma mass spectrometry(LAICP-MS)zircon U-Pb dating results show that the Bijigou syenite vein and wall-rock granite formed at 770±3.5 Ma(MSWD=0.17,n=28)and 810±4 Ma(MSWD=0.84,n=26),respectively.The zirconεHf(t)values of the syenite veins range from+1.52 to+5.33(average of+3.05),combined with its high potassium contents,negative Nb–Ta anomalies and positive Pb anomalies,suggesting that they may have originated from mantle-derived basaltic magma,which was modified by materials from subducting oceanic slab.The zirconεHf(t)and T_(DM2)ages of the wall-rock granite range from+0.71 to+5.71(average+3.06)and 1344 to 1659 Ma(average 1519 Ma),respectively,indicating that the granite was produced by partial melting of juvenile crust.The geochemical characteristics of the Bijigou syenite and granite indicate that they were formed in a continental margin arc setting.Thus,combined with previous studies,it suggests that there was a major subduction system along the northwestern margin of the Yangtze Block during 824-720 Ma,and the magmatism in the Hannan massif was divided into two episodes:(1)early magmatism(824-790 Ma),such as the Bijigou,Hongmiaozhen and Huangguanzhen granitoids,was derived from partial melting of the juvenile or pre-existing crust in a continental arc setting;(2)later magmatism(789-718 Ma),including Bijigou syenite,Wudumen,Erliba and Zushidian granitoids,formed in a subduction-related back-arc extensional environment.The long-term subduction system along the northwestern margin of the Yangtze Block during 824-720 Ma suggests that the Yangtze Block was previously located at the periphery of the Rodinia supercontinent.
基金supported by the Natural Science Foundation of Shandong Provence(Grant No.ZR2023MD058)National Natural Science Foundation of China(Grant Nos.42072219,41802201)。
文摘The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history of the Earth.Detailed petrography,mineral chemistry,metamorphic evolution and zircon U-Pb dating are presented for felsic granulite and two-pyroxene granulite from the Yishui complex to contribute to new insights into the Neoarchean tectonic evolution of the North China Craton.Three mineral assemblages are recognized for these granulite samples,including the prograde(M1),peak(M2)and retrograde(M3)mineral assemblages.Conventional geothermobarometry and phase equilibrium modeling yield P-T conditions of 6.5-10.9 kbar/718-839℃ for the peak metamorphism,which define a medium-pressure granulite-facies metamorphism occurred at middle to lower crust.Anticlockwise P-T paths with near-isobaric cooling(IBC)retrograde segments were reconstructed.Zircon LA-ICP-MS U-Pb dating suggests that the protolith of the felsic granulite was emplaced at 2541±7 Ma and the subsequent medium-pressure granulite-facies metamorphism occurred at 2518-2494 Ma.A two-stage mantle plume related crustal-scale sagduction geodynamic regime is proposed in the western Shandong terrane in the Neoarchean.
基金Project supported by the National Natural Science Foundation of China(Grant No.72031009)the National Social Science Foundation of China(Grant No.20&ZD058)。
文摘We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,where agents draw samples from their neighbors and then update their strategies based on conformity or inference according to the situation in the sample.Based on these assumptions,we present the state transition equations in the dynamic evolution of population cooperation,conduct simulation analysis on lattice networks and scale-free networks,and discuss how this mechanism affects the evolution of cooperation and how cooperation evolves under different levels of conformity in the network.Our simulation results show that blindly imitating the strategies of neighbors does not necessarily lead to rapid consensus in the population.Instead,rational inference through samples can better promote the evolution of the same strategy among all agents in the population.Moreover,the simulation results also show that a smaller sample size cannot reflect the true situation of the neighbors,which has a large randomness,and the size of the benefits obtained in cooperation determines the direction of the entire population towards cooperation or defection.This work incorporates the conforming behavior of agents into the game,uses the method of sampling for strategy updates and enriches the theory of evolutionary games with a more realistic significance.
基金National Natural Science Foundation of China(22478310,U21A20286 and 22206054)。
文摘Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.
基金supported by National Natural Science Foundation of China(NSFC,22338006,92356301,9235630033 and 22375062)Shanghai Municipal Science and Technology Major Project(21JC1401700)+4 种基金Shanghai Pilot Program for Basic Research(22TQ1400100-10)Fundamental Research Funds for the Central UniversitiesShanghai Pujiang Program(22PJ1402400)“Chenguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(22CGA32)the Young Elite Scientists Sponsorship Program by CAST(2023QNRC001).
文摘Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.