In this work, we study some computational aspects for the Bayesian analysis involving stable distributions. It is well known that, in general, there is no closed form for the probability density function of stable dis...In this work, we study some computational aspects for the Bayesian analysis involving stable distributions. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, the use of a latent or auxiliary random variable facilitates to obtain any posterior distribution when being related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to daily price returns of Abbey National shares, considered in [1], and the other is the length distribution analysis of coding and non-coding regions in a Homo sapiens chromosome DNA sequence, considered in [2]. Posterior summaries of interest are obtained using the OpenBUGS software.展开更多
A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time...A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time random walk with jumps and waiting times in the domains of attraction of stable laws.展开更多
基金partially supported by CNPq-Brazil,by CAPES-Brazil,by INCT em Matematica and also by Pronex Probabilidade e Processos Estocasticos-E-26/170.008/2008-APQ1the financial support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq).
文摘In this work, we study some computational aspects for the Bayesian analysis involving stable distributions. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, the use of a latent or auxiliary random variable facilitates to obtain any posterior distribution when being related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to daily price returns of Abbey National shares, considered in [1], and the other is the length distribution analysis of coding and non-coding regions in a Homo sapiens chromosome DNA sequence, considered in [2]. Posterior summaries of interest are obtained using the OpenBUGS software.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11671115 the Natural Science Foundation of Zhejiang Province under Grant No.LY14A010025
文摘A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time random walk with jumps and waiting times in the domains of attraction of stable laws.