Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic...Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.展开更多
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi...The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.展开更多
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround...Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.展开更多
The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications ...The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.展开更多
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text...Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.展开更多
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di...Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.展开更多
Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life d...Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively.展开更多
With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precisio...With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.展开更多
The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document ...The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document with a focus on simplicity and cost-effectiveness. The process involves splitting the document into chunks, extracting concepts within each chunk using a large language model (LLM), and building relationships based on the proximity of concepts in the same chunk. Unlike traditional named entity recognition (NER), which identifies entities like “Shanghai”, the proposed method identifies concepts, such as “Convenient transportation in Shanghai” which is found to be more meaningful for KG construction. Each edge in the KG represents a relationship between concepts occurring in the same text chunk. The process is computationally inexpensive, leveraging locally set up tools like Mistral 7B openorca instruct and Ollama for model inference, ensuring the entire graph generation process is cost-free. A method of assigning weights to relationships, grouping similar pairs, and summarizing multiple relationships into a single edge with associated weight and relation details is introduced. Additionally, node degrees and communities are calculated for node sizing and coloring. This approach offers a scalable, cost-effective solution for generating meaningful knowledge graphs from large documents, achieving results comparable to GraphRAG while maintaining accessibility for personal machines.展开更多
Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and so...Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks.展开更多
As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with h...As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.展开更多
A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov sub...A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.展开更多
Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 k...Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.展开更多
Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research h...Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research has been conducted on this subject. In this study, we used generalized additive models(GAMs) to explore the influence of spatial-temporal and environmental factors on CPUEs of species aggregated, small yellow croaker(Larimichthys polyactis), and octopus(Octopus variabilis) based on logbooks investigations conducted at 4 stations in an alongshore area of Haizhou Bay from 2011 to 2012. The results showed that all CPUEs exhibited significant spatial-temporal differences at various scales. Aggregated CPUE was high when the sea surface temperature(SST) was 15-18℃ and 20-23℃, which was mainly determined by life history traits of the octopus and small yellow croaker(optimal SSTs 14-17℃ and 19-24℃, respectively). Chlorophyll-a concentration had significant influences on the aggregated, small yellow croaker and octopus CPUEs at optimal ranges of 3.8-6.2 mg m^(-3), 4.2-4.8 mg m^(-3) and 4.5-5.5 mg m^(-3), respectively. Flow through the net had positive relationships with CPUEs. The approximate logarithmic trends in regression curves had a critical point of 2.5 Mm^3 d^(-1), which was the dividing point that differentiated whether the major factor affecting CPUEs was the flow velocity or the fishery resource. Our results from this study will help guide fishery production and improve catch rate of set-net fishing in Haizhou Bay.展开更多
To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and ge...To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and geographically and temporally weighted regression(GTWR)model to analyze the spatial-temporal patterns and the corresponding driving mechanisms of its urban-rural coordination since 1990.The results are as follows.First,the urban-rural coupling coordination degree in Northeast China was very low and improved slowly,but its stages of evolution is a good interpretation of the strategic arrangements of China's urbanization.Second,the urban-rural coupling coordination degree in Northeast China had spatial differences and was characterized by central polarization,converging on urban agglomeration,which was high in the south and low in the north.Moreover,the gap between the north and south weakened.Third,the spatial-temporal evolution of the urban-rural coordination relationship in Northeast China was influenced by pulling from the central cities,pushing from rural transformation,and government regulations.The influence intensity of the three mechanisms was weak,but the pulling from the central cities was stronger than that of the other two mechanisms.Furthermore,the spatial difference between the three mechanisms determines the spatial pattern and its evolution of the urban-rural coordination relationship in Northeast China.Fourth,to promote the development of urban-rural coordination in Northeast China,it is essential to advance urban-rural economic correlation,enhance the government^role in regulating and guiding,and adopt different policies for each region in Northeast China.展开更多
Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. This paper presents a specific realizatio...Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. This paper presents a specific realization of a class of random network models in which the connection probability between two vertices (i, j) is a specific function of degrees ki and kj. In the framework of the configuration model of random graphsp we find the analytical expressions for the degree correlation and clustering as a function of the variance of the desired degree distribution. The obtained expressions are checked by means of numerical simulations. Possible applications of our model are discussed.展开更多
In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limi...In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limitations in handling complex spatiotemporal patterns.To address this challenge,a prediction model was proposed for water quality,namely an adaptive multi-channel temporal graph convolutional network(AMTGCN).The AMTGCN integrates adaptive graph construction,multi-channel spatiotemporal graph convolutional network,and fusion layers,and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data.Onsite aquaculture water quality data and the metrics MAE,RMSE,MAPE,and R^(2) were collected to validate the AMTGCN.The results show that the AMTGCN presents an average improvement of 34.01%,34.59%,36.05%,and 17.71%compared to LSTM,respectively;an average improvement of 64.84%,56.78%,64.82%,and 153.16%compared to the STGCN,respectively;an average improvement of 55.25%,48.67%,57.01%,and 209.00%compared to GCN-LSTM,respectively;and an average improvement of 7.05%,5.66%,7.42%,and 2.47%compared to TCN,respectively.This indicates that the AMTGCN,integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network,could provide an efficient solution for water quality prediction in aquaculture.展开更多
Due to the limitations of the existing fault detection methods in the embryonic cellular array(ECA), the fault detection coverage cannot reach 100%. In order to evaluate the reliability of the ECA more accurately, emb...Due to the limitations of the existing fault detection methods in the embryonic cellular array(ECA), the fault detection coverage cannot reach 100%. In order to evaluate the reliability of the ECA more accurately, embryonic cell and its input and output(I/O) resources are considered as a whole, named functional unit(FU). The FU fault detection coverage parameter is introduced to ECA reliability analysis, and a new ECA reliability evaluation method based on the Markov status graph model is proposed.Simulation experiment results indicate that the proposed ECA reliability evaluation method can evaluate the ECA reliability more effectively and accurately. Based on the proposed reliability evaluation method, the influence of parameters change on the ECA reliability is studied, and simulation experiment results show that ECA reliability can be improved by increasing the FU fault detection coverage and reducing the FU failure rate. In addition, by increasing the scale of the ECA, the reliability increases to the maximum first, and then it will decrease continuously. ECA reliability variation rules can not only provide theoretical guidance for the ECA optimization design, but also point out the direction for further research.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金the National Natural Science Foundation of China(No.61461027,61762059)the Provincial Science and Technology Program supported the Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA226)。
文摘Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.
基金partially supported by the National Key Research and Development Program of China(2020YFB2104001)。
文摘The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.
基金supported by the National Key Research and Development Program of China(2018AAA0101005,2018AAA0102404)the Program of the Huawei Technologies Co.Ltd.(FA2018111061SOW12)+1 种基金the National Natural Science Foundation of China(61773054)the Youth Research Fund of the State Key Laboratory of Complex Systems Management and Control(20190213)。
文摘Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.
基金supported by National Key R&D Program of China(No.2022YFB3104500)Natural Science Foundation of Jiangsu Province(No.BK20222013)Scientific Research Foundation of Nanjing Institute of Technology(No.3534113223036)。
文摘The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.
基金supported by National Key R&D Program of China(2022QY2000-02).
文摘Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.
基金Researchers Supporting Project Number(RSPD2024R 553),King Saud University,Riyadh,Saudi Arabia.
文摘Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.
基金supported,in part,by the National Nature Science Foundation of China under Grant Numbers 62272236,62376128in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401.
文摘Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively.
文摘With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.
文摘The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document with a focus on simplicity and cost-effectiveness. The process involves splitting the document into chunks, extracting concepts within each chunk using a large language model (LLM), and building relationships based on the proximity of concepts in the same chunk. Unlike traditional named entity recognition (NER), which identifies entities like “Shanghai”, the proposed method identifies concepts, such as “Convenient transportation in Shanghai” which is found to be more meaningful for KG construction. Each edge in the KG represents a relationship between concepts occurring in the same text chunk. The process is computationally inexpensive, leveraging locally set up tools like Mistral 7B openorca instruct and Ollama for model inference, ensuring the entire graph generation process is cost-free. A method of assigning weights to relationships, grouping similar pairs, and summarizing multiple relationships into a single edge with associated weight and relation details is introduced. Additionally, node degrees and communities are calculated for node sizing and coloring. This approach offers a scalable, cost-effective solution for generating meaningful knowledge graphs from large documents, achieving results comparable to GraphRAG while maintaining accessibility for personal machines.
基金supported by the National Natural Science Foundation of China(Nos.62176122 and 62061146002).
文摘Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks.
基金supported by the Program of Support Xinjiang by Technology(2024E02028,B2-2024-0359)Xinjiang Tianchi Talent Program of 2024,the Foundation of Chinese Academy of Sciences(B2-2023-0239)the Youth Foundation of Shandong Natural Science(ZR2023QD070).
文摘As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.
文摘A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.
基金supported by the National Natural Science Foundation of China (71273105)the Fundamental Research Funds for the Central Universities,China (2013YB12)
文摘Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.
基金funded through the Special Fund for Agro-Scientific Research in the Public Interestthe Special Public Welfare Industry (agriculture) Research-Research and Demonstration of Fisheries Fishing Technology and Fishing Gear (No. 201203018)the National Natural Science Foundation of China (No. 31402350)
文摘Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research has been conducted on this subject. In this study, we used generalized additive models(GAMs) to explore the influence of spatial-temporal and environmental factors on CPUEs of species aggregated, small yellow croaker(Larimichthys polyactis), and octopus(Octopus variabilis) based on logbooks investigations conducted at 4 stations in an alongshore area of Haizhou Bay from 2011 to 2012. The results showed that all CPUEs exhibited significant spatial-temporal differences at various scales. Aggregated CPUE was high when the sea surface temperature(SST) was 15-18℃ and 20-23℃, which was mainly determined by life history traits of the octopus and small yellow croaker(optimal SSTs 14-17℃ and 19-24℃, respectively). Chlorophyll-a concentration had significant influences on the aggregated, small yellow croaker and octopus CPUEs at optimal ranges of 3.8-6.2 mg m^(-3), 4.2-4.8 mg m^(-3) and 4.5-5.5 mg m^(-3), respectively. Flow through the net had positive relationships with CPUEs. The approximate logarithmic trends in regression curves had a critical point of 2.5 Mm^3 d^(-1), which was the dividing point that differentiated whether the major factor affecting CPUEs was the flow velocity or the fishery resource. Our results from this study will help guide fishery production and improve catch rate of set-net fishing in Haizhou Bay.
基金Under the auspices of National Natural Science Foundation of China(No.41401182,41501173)Youth Fund for Humanities and Social Sciences of the Ministry of Education of China(No.19YJC630177)+2 种基金Natural Science Foundation of Heilongjiang Province(No.LH2019D008)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2018194)Talent Introduction Project of Southwest University(No.SWU019020)。
文摘To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and geographically and temporally weighted regression(GTWR)model to analyze the spatial-temporal patterns and the corresponding driving mechanisms of its urban-rural coordination since 1990.The results are as follows.First,the urban-rural coupling coordination degree in Northeast China was very low and improved slowly,but its stages of evolution is a good interpretation of the strategic arrangements of China's urbanization.Second,the urban-rural coupling coordination degree in Northeast China had spatial differences and was characterized by central polarization,converging on urban agglomeration,which was high in the south and low in the north.Moreover,the gap between the north and south weakened.Third,the spatial-temporal evolution of the urban-rural coordination relationship in Northeast China was influenced by pulling from the central cities,pushing from rural transformation,and government regulations.The influence intensity of the three mechanisms was weak,but the pulling from the central cities was stronger than that of the other two mechanisms.Furthermore,the spatial difference between the three mechanisms determines the spatial pattern and its evolution of the urban-rural coordination relationship in Northeast China.Fourth,to promote the development of urban-rural coordination in Northeast China,it is essential to advance urban-rural economic correlation,enhance the government^role in regulating and guiding,and adopt different policies for each region in Northeast China.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375025 and 10275027) and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No 704035)
文摘Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. This paper presents a specific realization of a class of random network models in which the connection probability between two vertices (i, j) is a specific function of degrees ki and kj. In the framework of the configuration model of random graphsp we find the analytical expressions for the degree correlation and clustering as a function of the variance of the desired degree distribution. The obtained expressions are checked by means of numerical simulations. Possible applications of our model are discussed.
基金funded by the National Key Research and Development Program of China:Sino-Malta Fund 2022“Autonomous Biomimetic Underwater Vehicle for Digital Cage Monitoring”(Grant No.2022YFE0107100).
文摘In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limitations in handling complex spatiotemporal patterns.To address this challenge,a prediction model was proposed for water quality,namely an adaptive multi-channel temporal graph convolutional network(AMTGCN).The AMTGCN integrates adaptive graph construction,multi-channel spatiotemporal graph convolutional network,and fusion layers,and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data.Onsite aquaculture water quality data and the metrics MAE,RMSE,MAPE,and R^(2) were collected to validate the AMTGCN.The results show that the AMTGCN presents an average improvement of 34.01%,34.59%,36.05%,and 17.71%compared to LSTM,respectively;an average improvement of 64.84%,56.78%,64.82%,and 153.16%compared to the STGCN,respectively;an average improvement of 55.25%,48.67%,57.01%,and 209.00%compared to GCN-LSTM,respectively;and an average improvement of 7.05%,5.66%,7.42%,and 2.47%compared to TCN,respectively.This indicates that the AMTGCN,integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network,could provide an efficient solution for water quality prediction in aquaculture.
基金supported by the National Natural Science Foundation of China(61601495,61372039)。
文摘Due to the limitations of the existing fault detection methods in the embryonic cellular array(ECA), the fault detection coverage cannot reach 100%. In order to evaluate the reliability of the ECA more accurately, embryonic cell and its input and output(I/O) resources are considered as a whole, named functional unit(FU). The FU fault detection coverage parameter is introduced to ECA reliability analysis, and a new ECA reliability evaluation method based on the Markov status graph model is proposed.Simulation experiment results indicate that the proposed ECA reliability evaluation method can evaluate the ECA reliability more effectively and accurately. Based on the proposed reliability evaluation method, the influence of parameters change on the ECA reliability is studied, and simulation experiment results show that ECA reliability can be improved by increasing the FU fault detection coverage and reducing the FU failure rate. In addition, by increasing the scale of the ECA, the reliability increases to the maximum first, and then it will decrease continuously. ECA reliability variation rules can not only provide theoretical guidance for the ECA optimization design, but also point out the direction for further research.