期刊文献+
共找到103,377篇文章
< 1 2 250 >
每页显示 20 50 100
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
1
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Role of Right Ventricular-Pulmonary Arterial Coupling Measured by Echocardiography in Predicting Right Ventricular Dysfunction after Cardiac Surgery
2
作者 Ismail Nasr El-Sokkary Esam Ahmed Khalil +7 位作者 Mohammed Fawzy Eltaweel Ahmed Alherazi Mohammed Samy Bahaa Abdelgawad Elkhonezy Mohamed El Sayed Moussa Mohamed Ahmed Mosaad Zaki Ibrahim Abdel Fattah Yassin Mohamed Kamal Rehan 《World Journal of Cardiovascular Surgery》 2025年第1期1-11,共11页
Background: The tricuspid annular plane systolic excursion (TAPSE) and pulmonary artery systolic pressure (PASP) is an indirect estimate of right ventricular-pulmonary arterial (RV-PA) coupling that has been shown to ... Background: The tricuspid annular plane systolic excursion (TAPSE) and pulmonary artery systolic pressure (PASP) is an indirect estimate of right ventricular-pulmonary arterial (RV-PA) coupling that has been shown to correlate with invasive measures. We aimed to assess the ability of the tricuspid annular plane systolic excursion/pulmonary systolic pressure ratio (TAPSE/PASP) as a measure for RV-PA coupling to predict the development of RV dysfunction after cardiac surgery. Methods: This prospective study was conducted on 100 patients with ischemic heart disease and undergoing cardiac surgery (coronary artery bypass graft (CABG)) with normal preoperative right ventricular function, classified according to RV function outcomes into 2 groups: Normal RV group (65 patients) and RV dysfunction group (35 patients). All cases underwent per and postoperative transthoracic echocardiography. Results: By using receiver operating characteristic curve analysis, pre-operative TAPSE/PASP ratio could significantly predict the RV dysfunction (P 0.58, with AUC of 94%, 88.6% sensitivity, and 89.2% specificity. Post-operative TAPSE/PASP Ratio could significantly predict the RV dysfunction (P 0.39, with AUC of 84%, 100% sensitivity, and 76.9% specificity. Pre-operative TAPSE/PASP ratio could significantly predict mortality (P Conclusion: The TAPSE/PASP ratio is an excellent tool for CABG patients for its ability to detect and predict the development of RV dysfunction after cardiac surgery, along with the prediction of mortality in post-operative CABG patients. 展开更多
关键词 Right Ventricular Pulmonary Arterial coupling ECHOCARDIOGRAPHY Cardiac Surgery
在线阅读 下载PDF
Electrocatalytic cleavage of a lignin β-O-4 model compound and coupling with nitrogen-containing aromatics using Prussian blue analogue-derived nickel–cobalt spinel
3
作者 Yi Qi Xueying Chen +3 位作者 Bowen Liu Xuliang Lin Xueqing Qiu Yanlin Qin 《Journal of Energy Chemistry》 2025年第1期628-636,共9页
Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,sy... Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents. 展开更多
关键词 SPINEL Biomass valorization Electrocatalysis Lignin oxidation coupling
在线阅读 下载PDF
Study on the Fluid-Solid Coupling Seepage of the Deep Tight Reservoir Based on 3D Digital Core Modeling
4
作者 Haijun Yang Zhenzhong Cai +5 位作者 Hui Zhang Chong Sun Jing Li Xiaoyu Meng Chen Liu Chengqiang Yang 《Energy Engineering》 2025年第2期537-560,共24页
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an... Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability. 展开更多
关键词 Digital core fluid-solid coupling pore structure microscopic seepage
在线阅读 下载PDF
Three-body physics under dissipative spin-orbit coupling
5
作者 Xi Zhao 《Chinese Physics B》 2025年第3期332-338,共7页
We study the trimer state in a three-body system,where two of the atoms are subject to Rashba-type spin-orbit coupling and spin-dependent loss while interacting spin-selectively with the third atom.The short-time cond... We study the trimer state in a three-body system,where two of the atoms are subject to Rashba-type spin-orbit coupling and spin-dependent loss while interacting spin-selectively with the third atom.The short-time conditional dynamics of the three-body system is effectively governed by a non-Hermitian Hamiltonian with an imaginary Zeeman field.Remarkably,the interplay of non-Hermitian single particle dispersion and the spin-selective interaction results in a Borromean state and an enlarged trimer phase.The stability of trimer state can be reflected by the imaginary part of trimer energy and the momentum distribution of trimer wave function.We also show the phase diagram of the three-body system under both real and imaginary Zeeman fields.Our results illustrate the interesting consequence of non-Hermitian spectral symmetry on the few-body level,which may be readily observable in current cold-atom experiments. 展开更多
关键词 few-body physics non-Hermitian physics spin-orbit coupling Borromean state
在线阅读 下载PDF
Optimized reinforcement of granite residual soil using a cement and alkaline solution: A coupling effect
6
作者 Bingxiang Yuan Jingkang Liang +5 位作者 Baifa Zhang Weijie Chen Xianlun Huang Qingyu Huang Yun Li Peng Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期509-523,共15页
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re... Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance. 展开更多
关键词 Granite residue soil(GRS) REINFORCEMENT coupling effect Alkali activation Mechanical properties
在线阅读 下载PDF
Underground mining impact on groundwater in Kuye River Basin,China:A coupling model study
7
作者 Shu Li Yi Jing +4 位作者 Xiangyu Zhang Fengran Zhang Qingsong Qi Ningbo Li Le Bai 《River》 2025年第1期106-115,共10页
The Kuye River Basin has experienced a rapid depletion of groundwater due to the increased coal production.In this study,by introducing the empirical equations derived from the three zone theory in the coal mining ind... The Kuye River Basin has experienced a rapid depletion of groundwater due to the increased coal production.In this study,by introducing the empirical equations derived from the three zone theory in the coal mining industry in China as a boundary condition,a calculation model was developed by coupling the soil and water assessment tool and visual modular three-dimensional finite-difference ground-water flow model(SWAT-VISUAL MODFLOW).The model was applied to several coal mines in the basin to quantify the groundwater impact of underground mining.For illustration purposes,two underground water observation stations and one water level station were selected for groundwater change simulation in 2009,producing the results that agreed well with the observed data.We found that groundwater level was closely related to the height of the fractured water-conducting zone caused by underground mining,and a higher height led to a lower groundwater level.This finding was further supported by the calculation that underground mining was responsible for 23.20mm aquifer breakages in 2009.Thus,preventing surface subsidence due to underground mining can help protecting the basin's groundwater. 展开更多
关键词 coupled SWAT-VISUAL MODFLOW GROUNDWATER Kuye River Basin underground mining for coal
在线阅读 下载PDF
Research on the application of the parameter freezing precise exponential integrator in vehicle-road coupling vibration
8
作者 Yu ZHANG Chao ZHANG +1 位作者 Shaohua LI Shaopu YANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期373-390,共18页
The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varyin... The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varying dynamics,making the exact solutions challenging to obtain.As a result,numerical integration methods are typically employed.However,conventional methods often suffer from low computational efficiency.To address this,this paper explores the application of the parameter freezing precise exponential integrator to vehicle-road coupling models.The model accounts for road roughness irregularities,incorporating all terms unrelated to the linear part into the algorithm's inhomogeneous vector.The general construction process of the algorithm is detailed.The validity of numerical results is verified through approximate analytical solutions(AASs),and the advantages of this method over traditional numerical integration methods are demonstrated.Multiple parameter freezing precise exponential integrator schemes are constructed based on the Runge-Kutta framework,with the fourth-order four-stage scheme identified as the optimal one.The study indicates that this method can quickly and accurately capture the dynamic system's vibration response,offering a new,efficient approach for numerical studies of high-dimensional vehicle-road coupling systems. 展开更多
关键词 vehicle-road coupled dynamics dynamic response parameter freezing precise exponential integrator Newmark-βintegration
在线阅读 下载PDF
Synergistic promotion strategy of “dual-site” and “dual-path” to enhance the C–C coupling between CO_(2) and HCHO driven by photoelectrocatalysis
9
作者 Hongqiang Yang Jianfeng Zheng +6 位作者 Guoyu Wang Yifei Gao Yatao Yang Jia Li Xiaojin Han Yan Cui Zhanggen Huang 《Journal of Energy Chemistry》 2025年第1期39-49,共11页
Photoelectrocatalytic coupling CO_(2)and volatile organic compounds (VOCs) is a promising green strategy for the synergistic conversion of the two carbon-containing resources to C2products.The catalytic efficiency is ... Photoelectrocatalytic coupling CO_(2)and volatile organic compounds (VOCs) is a promising green strategy for the synergistic conversion of the two carbon-containing resources to C2products.The catalytic efficiency is always at the mercy of chemical inertness of CO_(2)and the competitive hydrogen evolution of H2O.Herein,a modified g-C_(3)N_(4)/ZnAl-LDH Z-scheme heterojunction catalyst with dual reaction site was rationally designed and precisely constructed.The Faraday efficiency of ethanol reached 68.67%with a corresponding formation rate of 227.3μmol g^(-1)h^(-1).As revealed by in-situ characterizations and density functional theory calculations,CO_(2)and HCHO were absorbed at Zn site and N site,respectively.Then,*CO generated from CO_(2)and HCHO was converted to*CH_(3)O and*CHO on the dual-active-site heterojunction.The detailed reaction mechanism experiments indicated that C–C coupling only occurred between*CO and*CH_(3)O in electrocatalysis process.Apart from the“*CO+*CH_(3)O”path,another“*CO+*CHO”coupling path was also detected in photoelectrocatalytic process.The selectivity of ethanol was significantly enhanced due to the synthesis of dual-site catalyst and the dual-path coupling path between CO_(2)and HCHO simultaneously driven by light and electricity. 展开更多
关键词 g-C_(3)N_(4)/ZnAl-LDH heterojunction Z-scheme C-C coupling ETHANOL
在线阅读 下载PDF
Deformation mechanism and NPR anchor cable truss coupling support in tunnel through fault fracture zone
10
作者 HUO Shusen TAO Zhigang +2 位作者 HE Manchao WANG Fengnian XU Chuang 《Journal of Mountain Science》 2025年第1期354-374,共21页
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m... To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions. 展开更多
关键词 Fault fracture zone Large deformation Nuclear magnetic resonance NPR anchor cable truss support coupled simulation
在线阅读 下载PDF
Impact of Climate Change on Crop-cropland Coupling Relationship:A Case Study of the Loess Plateau in China
11
作者 LI Shunke LIU Yansui +1 位作者 SHAO Yajing WANG Xiaochen 《Chinese Geographical Science》 2025年第1期92-110,共19页
Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural... Climate change brings new challenges to the sustainable development of agriculture in the new era.Accurately grasping the patterns of climate change impacts on agricultural systems is crucial for ensuring agricultural sustainability and food security.Taking the Loess Plateau(LP),China as an example,this study used a coupling coordination degree model and spatial autocorrelation analysis to portray the spatial and temporal features of crop-cropland coupling relationship from 2000 to 2020 and explored the impact law of climate change through geographically and temporally weighted regression(GTWR).The results were as follows:1)the crop-cropland coupling coordination degree of the LP showed a gradual upward trend from 2000 to 2020,forming a spatial pattern with lower values in the central region and higher values in the surrounding areas.2)There was a positive correlation in the spatial distribution of cropcropland coupling coordination degree in the LP from 2000 to 2020,and the high value-low value(H-L)and low value-low value(L-L)agglomerations continued to expand eastward,while the spatial and temporal evolution of the high value-high value(H-H)and low value-high value(L-H)agglomerations was not obvious.3)The impacts of climatic elements on crop-cropland coupling coordination degree in the LP showed strong heterogeneity in time scales.The inhibitory impacts of summer days(SU)and frost days(FD)accounted for a higher proportion,while the annual average temperature(TEM)had both promoting and inhibiting impacts.The impacts proportion and intensity of extreme heavy precipitation day(R25),continuous drought days(CDD),and annual precipitation(PRE)all experienced significant changes.4)In space,the impacts of SU and FD on the crop-cropland coupling coordination degree varied with latitude and altitude.The adaptability of the LP to R25 gradually strengthened,and the extensions of CDD and increase of PRE led to the increasing inhibition beyond the eastern region of LP,and TEM showed a promoting impact in the Fenwei Plain.As an important grainproducing area in China,the LP should actively deal with the impacts of climate change on the crop-cropland coupling relationship,vigorously safeguard food security,and promote sustainable agricultural development. 展开更多
关键词 climate change crop-cropland coupling relationship geographically and temporally weighted regression(GTWR) extreme weather events Loess Plateau China
在线阅读 下载PDF
Tuning the interfacial reaction environment via pH-dependent and induced ions to understand C–N bonds coupling performance in NO_(3)-integrated CO_(2)reduction to carbon and nitrogen compounds over dual Cu-based N-doped carbon catalyst
12
作者 Tianhang Zhou Chen Shen +2 位作者 Zhenghao Wu Xingying Lan Yi Xiao 《Journal of Energy Chemistry》 2025年第1期273-285,共13页
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,... Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions. 展开更多
关键词 pH-dependent micro-environments C-N coupling N-integrated CO_(2)RR Dual Cu-based nitrogen carbon catalysts Explicit solvation model lon stabilizer AIMD
在线阅读 下载PDF
Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells 被引量:2
13
作者 Ruikun Cao Kexuan Sun +8 位作者 Chang Liu Yuhong Mao Wei Guo Ping Ouyang Yuanyuan Meng Ruijia Tian Lisha Xie Xujie Lü Ziyi Ge 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期325-340,共16页
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker... This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit. 展开更多
关键词 Electron-phonon coupling A-site cation engineering Non-radiative recombination
在线阅读 下载PDF
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 被引量:2
14
作者 Yang Li Renshu Yang +1 位作者 Yanbing Wang Dairui Fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期148-166,共19页
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i... This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent. 展开更多
关键词 Water coupling coefficient Radial uncoupled charge Numerical simulation Fractal dimension
在线阅读 下载PDF
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers 被引量:2
15
作者 Andergachew Mekonnen Berhe Khalil As’ham +2 位作者 Ibrahim Al-Ani Haroldo T.Hattori Andrey E.Miroshnichenko 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期20-32,共13页
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo... Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature. 展开更多
关键词 catenary-shaped field enhancement strong coupling PLASMON EXCITON Rabi splitting
在线阅读 下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances 被引量:2
16
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
在线阅读 下载PDF
Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions 被引量:1
17
作者 Chao Li Shizhao Wang +3 位作者 Yunshan Wang Xuebin An Gang Yang Yong Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study invest... To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively. 展开更多
关键词 PHOSPHOGYPSUM Potassium feldspar coupling reaction LEACHING Waste treatment Kinetics
在线阅读 下载PDF
Evolution and Application of Sealing Ability of Gypsum Caprocks under Temperature-Pressure Coupling:An Example of the ZS5 Well in the Tazhong Area of the Tarim Basin 被引量:1
18
作者 LIU Hua ZHAO Shan +3 位作者 YANG Xianzhang ZHU Yongfeng WANG Shen ZHANG Ke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期168-184,共17页
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid... Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved. 展开更多
关键词 temperature-pressure coupling gypsum caprocks brittle-plastic evolution sealing capacity Tarim Basin
在线阅读 下载PDF
Icariin accelerates bone regeneration by inducing osteogenesisangiogenesis coupling in rats with type 1 diabetes mellitus 被引量:2
19
作者 Sheng Zheng Guan-Yu Hu +2 位作者 Jun-Hua Li Jia Zheng Yi-Kai Li 《World Journal of Diabetes》 SCIE 2024年第4期769-782,共14页
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e... BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs. 展开更多
关键词 ICARIIN Osteogenesis-angiogenesis coupling Type 1 diabetes mellitus Bone defect Bone regeneration
在线阅读 下载PDF
Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear 被引量:1
20
作者 Aixiang Wu Zhenqi Wang +3 位作者 Zhuen Ruan Raimund Bürger Shaoyong Wang Yi Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期862-876,共15页
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o... Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed. 展开更多
关键词 thickened tailings compression-shear coupling compressive yield stress shear yield stress CONCENTRATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部