In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use ...In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use the Z1transformation to get the general solutions of some nonlinear partial differential equations for the first time, and use the general solutions to obtain the exact solutions of some typical definite solution problems.展开更多
In this paper, we get the N-fold Darboux transformation with multi-parameters for the coupled mKdV equations with the help of a guage transformation of the spectral problem. As an application, some new multi-soliton s...In this paper, we get the N-fold Darboux transformation with multi-parameters for the coupled mKdV equations with the help of a guage transformation of the spectral problem. As an application, some new multi-soliton solutions and complexiton solutions are obtained from choosing the appropriate seed solution. All obtained solutions and N-fold Darboux transformations are expressed using the Vandermonde-like determinants.展开更多
This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that...This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.展开更多
In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved ...In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.展开更多
In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensa...In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.展开更多
In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 rep...In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 represents a trapping potential,and f has an exponential critical growth.Under the appropriate assumptions of f,we have obtained the existence of normalized solutions to the above Schr?dinger equation by introducing a variational method.And these solutions are also high energy solutions with positive energy.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equatio...Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.展开更多
In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting device...In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.展开更多
In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact soluti...In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were suc...The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were successfully prepared and introduced into MgH_(2)(denoted as MgH_(2)-NiCu@C).The onset and peak temperatures of hydrogen desorption of MgH_(2)-11 wt.%NiCu@C are 175.0℃and282.2℃,respectively.The apparent activation energy of dehydrogenated reaction is 77.2±4.5 kJ/mol for MgH_(2)-11 wt.%NiCu@C,which is lower than half of that of the as-milled MgH_(2).Moreover,MgH_(2)-11 wt.%NiCu@C displays great cyclic stability.The strengthening"hydrogen pumping"effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)is proposed to explain the remarkable improvement in hydrogen absorption/desorption kinetic properties of MgH_(2).This work offers a novel perspective for the design of bimetallic nanoparticles and beyond for application in hydrogen storage and other energy related fields.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
Background:Zoonotic diseases originating in animals pose a significant threat to global public health.Recent outbreaks,such as coronavirus disease 2019(COVID-19),have caused widespread illness,death,and socioeconomic ...Background:Zoonotic diseases originating in animals pose a significant threat to global public health.Recent outbreaks,such as coronavirus disease 2019(COVID-19),have caused widespread illness,death,and socioeconomic disruptions worldwide.To cope with these diseases effectively,it is crucial to strengthen surveillance capabilities and establish rapid response systems.Aim:The aim of this review is to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cuttingedge innovations could be leveraged to prevent,detect,and control emerging zoonotic disease outbreaks.Herein,we discuss advanced tools including big data analytics,artificial intelligence,the Internet of Things,geographic information systems,remote sensing,molecular diagnostics,point-of-care testing,telemedicine,digital contact tracing,and early warning systems.Results:These technologies enable real-time monitoring,the prediction of outbreak risks,early anomaly detection,rapid diagnosis,and targeted interventions during outbreaks.When integrated through collaborative partnerships,these strategies can significantly improve the speed and effectiveness of zoonotic disease control.However,several challenges persist,particularly in resource-limited settings,such as infrastructure limitations,costs,data integration and training requirements,and ethical implementation.Conclusion:With strategic planning and coordinated efforts,modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses,and serve as a critical resource against emerging zoonotic disease threats worldwide.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular ma...We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular matrix.These are a kind of spatiotemporal symmetric solutions,e.g.spiral waves.We give the averaging method for the existence of affine periodic solutions in two situations:one in which the initial values of the affine periodic solutions of the unperturbed system form a manifold,and another that does not rely on the structure of the initial values of the unperturbed system's affine periodic solutions.The transversal condition is determined using the Brouwer degree.We also present a higher order averaging method for general degenerate systems by means of the Brouwer degree and a Lyapunov-Schmidt reduction.展开更多
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
文摘In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use the Z1transformation to get the general solutions of some nonlinear partial differential equations for the first time, and use the general solutions to obtain the exact solutions of some typical definite solution problems.
文摘In this paper, we get the N-fold Darboux transformation with multi-parameters for the coupled mKdV equations with the help of a guage transformation of the spectral problem. As an application, some new multi-soliton solutions and complexiton solutions are obtained from choosing the appropriate seed solution. All obtained solutions and N-fold Darboux transformations are expressed using the Vandermonde-like determinants.
文摘This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.
文摘In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.
文摘In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)。
文摘In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 represents a trapping potential,and f has an exponential critical growth.Under the appropriate assumptions of f,we have obtained the existence of normalized solutions to the above Schr?dinger equation by introducing a variational method.And these solutions are also high energy solutions with positive energy.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.
基金Project supported by the Science and Technology Plan Joint Program of Liaoning Province of China(Natural Science Foundation-Doctoral Research Launch Project)(No.2024-BSLH-027)the Fundamental Research Funds for Undergraduate Universities of Liaoning Province of China(No.LJBKY2024033)+1 种基金the National Natural Science Foundation of China(No.12472064)the Natural Science Foundation of Liaoning Province of China(No.2023-MS-118)。
文摘In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.
文摘In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金supported by the National Natural Science Foundation of China(52071177,52171214)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_1112,KYCX21_1107)+1 种基金Six Talent Peaks Project in Jiangsu Province(2018,XNY-020)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were successfully prepared and introduced into MgH_(2)(denoted as MgH_(2)-NiCu@C).The onset and peak temperatures of hydrogen desorption of MgH_(2)-11 wt.%NiCu@C are 175.0℃and282.2℃,respectively.The apparent activation energy of dehydrogenated reaction is 77.2±4.5 kJ/mol for MgH_(2)-11 wt.%NiCu@C,which is lower than half of that of the as-milled MgH_(2).Moreover,MgH_(2)-11 wt.%NiCu@C displays great cyclic stability.The strengthening"hydrogen pumping"effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)is proposed to explain the remarkable improvement in hydrogen absorption/desorption kinetic properties of MgH_(2).This work offers a novel perspective for the design of bimetallic nanoparticles and beyond for application in hydrogen storage and other energy related fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
文摘Background:Zoonotic diseases originating in animals pose a significant threat to global public health.Recent outbreaks,such as coronavirus disease 2019(COVID-19),have caused widespread illness,death,and socioeconomic disruptions worldwide.To cope with these diseases effectively,it is crucial to strengthen surveillance capabilities and establish rapid response systems.Aim:The aim of this review is to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cuttingedge innovations could be leveraged to prevent,detect,and control emerging zoonotic disease outbreaks.Herein,we discuss advanced tools including big data analytics,artificial intelligence,the Internet of Things,geographic information systems,remote sensing,molecular diagnostics,point-of-care testing,telemedicine,digital contact tracing,and early warning systems.Results:These technologies enable real-time monitoring,the prediction of outbreak risks,early anomaly detection,rapid diagnosis,and targeted interventions during outbreaks.When integrated through collaborative partnerships,these strategies can significantly improve the speed and effectiveness of zoonotic disease control.However,several challenges persist,particularly in resource-limited settings,such as infrastructure limitations,costs,data integration and training requirements,and ethical implementation.Conclusion:With strategic planning and coordinated efforts,modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses,and serve as a critical resource against emerging zoonotic disease threats worldwide.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金supported by the National Natural Science Foundation of China(1237119112071175)+4 种基金supported by the NSFC(1207117511901080)supported by the NSFC(12071175)the Fundamental Research Funds For the Central Universities(2412023YQ003)the Natural Science Foundation of Jilin Province(20200201253JC)。
文摘We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular matrix.These are a kind of spatiotemporal symmetric solutions,e.g.spiral waves.We give the averaging method for the existence of affine periodic solutions in two situations:one in which the initial values of the affine periodic solutions of the unperturbed system form a manifold,and another that does not rely on the structure of the initial values of the unperturbed system's affine periodic solutions.The transversal condition is determined using the Brouwer degree.We also present a higher order averaging method for general degenerate systems by means of the Brouwer degree and a Lyapunov-Schmidt reduction.