[Objectives]To evaluate the status of soil nutrient and fertility in main dry farming regions of Laos,and to explore differences in soil nutrient content between regions and crop types.[Methods]By collecting 57 soil s...[Objectives]To evaluate the status of soil nutrient and fertility in main dry farming regions of Laos,and to explore differences in soil nutrient content between regions and crop types.[Methods]By collecting 57 soil samples in the 0-20 cm layer of the main dryland in southern and northern provinces of Laos.Soil pH,organic matter,total nitrogen,available nitrogen,available phosphorus,available potassium,exchangeable calcium,exchangeable magnesium and available zinc content were analyzed.[Results]The soil in the main dry farming regions of Laos was acidic,the overall fertility level was good,and the exchangeable calcium and magnesium contents were low.There were differences in soil nutrient content in the dry farming regions of southern and northern Laos.Drylands where cassava and maize were growed had higher fertility.[Conclusions]It is suggested to apply lime or alkaline fertilizer in the dry land with acid soil to increase soil pH and increase the supply of soil calcium and magnesium.Organic fertilizer should be applied to improve soil water retention capacity,and it is necessary to pay attention to the fertilization ratio of macroelements to balance fertilization.展开更多
Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented...Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.展开更多
The annual dynamic changes of nutrient content in soil and leaves of adult Areca catechu trees in the A.catechu producing area Tunchang were studied by fixed point observation method to provide the scientific basis fo...The annual dynamic changes of nutrient content in soil and leaves of adult Areca catechu trees in the A.catechu producing area Tunchang were studied by fixed point observation method to provide the scientific basis for the rational fertilization of A.catechu.The results showed that the soil of the A.catechu plantation was weakly acidic on the whole,and soil pH was 5.53.Soil phosphorus content was extremely low,only 5.46 mg/kg.Nitrogen content in A.catechu leaves was the highest( up to 20.24 g/kg),while phosphorus content was the lowest( only 0.31 g/kg).The differences in nutrient content were related to the characteristics of nutrient demand.There was a difference in nutrient content of A.catechu leaves during the annual growth period.Because the maximum nutrient requirement period of A.catechu trees was from April to September,the important fertilization period of A.catechu trees was also from April to September.展开更多
This study examined changes in some soil hydrophysical, chemical properties and wheat yield (grain;straw yield, N, P, K, Protein and carbohydrates contents) as trends under two cultivated period 10 and 25 year and Far...This study examined changes in some soil hydrophysical, chemical properties and wheat yield (grain;straw yield, N, P, K, Protein and carbohydrates contents) as trends under two cultivated period 10 and 25 year and Farm Yard manure (FYM) addition under sprinkler irrigation system on a newly reclaimed soils, Nubaria, Beheira Governorate, Egypt. Obtained results noticed that cultivation period has more pronounced effect than FYM addition on soil water content at field capacity, wilting point and available water with increase percent 15.1%, 9.3%;19.0% and 25.7%, 19.5% and 30.0% for FYM and cultivation period comparing with control one. Hydraulic conductivity values were strongly affected by cultivation period and FYM addition and significantly decreased values by about 18.9% and 12.1% in same sequences. Wheat straw content from protein had a superior effect under 25 than 10 years cultivated periods with values 61.9 and 6.7 comparing with control, respectively as affected by FYM addition, while FYM alone improved protein content in straw by about 31.9% comparing with untreated one. Slightly increase in straw protein content was attained relative to the increase of cultivated period by about 7.8%. Nutrients content in grain is more than FYM, where the increase percentage were 5.2%, 13.5%;3.8% and 26.5, 21.3;22.6 comparing cultivated periods 25 with 10 years and FYM addition with control, respectively. FYM individually under two studied cultivated periods is more effective under 10 years (28.0%, 25.2%;15.1%) than the 2nd one (25.1%, 25.2%;15.1%) comparing with untreated FYM plots. While N, P and K content in wheat straw had unclear trend and the increase were 6.8, 23.23;56.5% and 62.9, 6.0;29.8 as a result of FYM addition under 10 and 25 years cultivated periods, respectively. The highest values of protein and carbohydrates content in wheat grains as affected by studied factors were 12.86% and 67.43%) were obtained under cultivated period 25 years after FYM addition. Cultivated periods had a highly significant effect on the field water use efficiency values of grain more than the effect of FYM. The highest values of grain and straw yield were recorded at 10 years cultivated periods + treated FYM (2966.8 kg/fed) and 25 years cultivated periods treated with FYM (3835.6 kg/fed). Cultivated periods increased grain and straw yield of wheat crop by about 57.6% and 8.3%. Whereas, FYM increased grain and straw yield by about 39.8% and 58.8% relative to the control, respectively.展开更多
[Objectives]To investigate the changes in soil organic matter,nitrogen and phosphorus content in the decomposition process of Korla fragrant pear branches by indoor mixed culture.[Methods]The branches of Korla fragran...[Objectives]To investigate the changes in soil organic matter,nitrogen and phosphorus content in the decomposition process of Korla fragrant pear branches by indoor mixed culture.[Methods]The branches of Korla fragrant pear in the orchard were collected and returned to the field for a period of 150 d for indoor mixed culture.[Results]Different ages of Korla fragrant pear branches have different effects on soil nutrient content during the simulated return to field decomposition process.Compared with the control in the same period,the treatment of returning to field reached a significant level(P<0.05).Compared with the control,the average values of organic matter,total nitrogen and available phosphorus content in treatment 1 and treatment 2 increased by 2.16 times and 1.93 times,61%and 59%,5.88 times and 6.88 times,respectively;compared with the control,the average increase performance of the alkaline hydrolysis nitrogen content of the two treatments was basically the same,and the treatment 2 was the best;compared with the control,the average total phosphorus content of treatment 1 and treatment 2 increased but not significantly.[Conclusions]The contents of soil organic matter,nitrogen and phosphorus were all increased during the decomposition of pear branches,and the overall improvement effect of 10-year-old trees was better than that of 5-year-old trees.Returning the pruned branches to the field can provide a reliable theoretical basis for solving the problem of organic fertilizer shortage in orchards,and also can ensure technical support for improving soil fertility and improving the rhizosphere micro-environment of pear trees.展开更多
In this study,three different ages of Larix principis-rupprechtii forests in 5,10 and 20 years were selected as the research objects,and the changes in soil nutrient and soil enzyme activities in different growth stag...In this study,three different ages of Larix principis-rupprechtii forests in 5,10 and 20 years were selected as the research objects,and the changes in soil nutrient and soil enzyme activities in different growth stages were analyzed. The results showed that the contents of organic matter and available phosphorus in the soil of different growth stages showed a significant downward trend with the increase of soil depth.For different forest ages in the same soil layer,the soil available phosphorus content declined with the increase of the forest age. The organic matter content of 40-60 cm in 20 years of forest age was the lowest in July,which was 4. 17 g/kg,significantly lower than that in other soil layers. Besides,the soil available phosphorus content of 5 years of forest age reached the maximum in July,with an average of 4. 44 mg/kg,which was higher than the available phosphorus content in soil in May and September,but the difference between the three months was not significant. The changes in ammonium nitrogen and nitrate nitrogen content in soil with different forest ages were consistent with the changes in the soil depth,showing a downward trend. In the new leaf stage,the ammonium nitrogen content of the L. principis-rupprechtii forest land in5 years of age at 20-40 and 40-60 cm of the soil depth was 13. 47 and 9. 09 mg/kg,respectively,which was 46. 9% and 64. 2% lower than that at 0-20 cm( 25. 36 mg/kg) of the soil depth. The soil nitrate nitrogen content of 20 years of forest age was 19. 24 mg/kg,which was25. 8% lower than that of 10 years of forest age,showing significant difference( P < 0. 05). In addition,with the increase of the age of L. principis-rupprechtii,soil catalase( CAT),alkaline phosphatase( ALP) and urease( Ure) decreased,and the decline of ALP was slow,while CAT and Ure decreased significantly. In summary,it is concluded that the soil fertility of forest land declined with the increase of forest age on the basis of change trend of soil nutrient and soil enzyme activity in the surveyed forest age.展开更多
Based on the investigation of 56 soil samples( 0-30 cm) in citrus orchards of Guangxi,the content of soil organic matter and available nutrients as well as their correlations in the citrus orchards were studied. The r...Based on the investigation of 56 soil samples( 0-30 cm) in citrus orchards of Guangxi,the content of soil organic matter and available nutrients as well as their correlations in the citrus orchards were studied. The results showed that soil was rich in organic matter,and the proportion of soil samples deficient in available N,P and K was 30. 36%,32. 14% and 28. 57% respectively. Soil was seriously deficient in soil available Ca,Mg and B,while the content of soil available Fe and Cu in soil was too high. There were significant or extremely significant positive or negative correlations between soil pH,organic matter and several available nutrients. It is recommended to apply Mg fertilizer,B fertilizer,lime or other alkaline fertilizer and reduce the spraying of fungicides containing Cu in the citrus orchards.展开更多
Taking 0-30 cm, 0-40 cm, 0-50 cm, 0-60 cm of dry land Fenlong and 0-40 cm paddy field as samples of soil profile with corresponding original soil as the control group, we measured content of organic matter, quick-acti...Taking 0-30 cm, 0-40 cm, 0-50 cm, 0-60 cm of dry land Fenlong and 0-40 cm paddy field as samples of soil profile with corresponding original soil as the control group, we measured content of organic matter, quick-acting N, quick-acting P and quick-acting K, effective B, Cu, Zn and Mn. Results indicate that available nutrients in soil after Fenlong were higher than original soil. For dry land, the increase of organic matter, quick-acting N, quick-acting P and quick-acting K is 3.02%-35.16%, 6.80%-39.54%, 2.81%-44.46%, and 7.72%-53.71% respectively. There is also increase in effective content of trace element, B, Cu, Zn and Mn. For paddy field, the increase of organic matter, quick-acting N, P and K is 19.64%, 24.02%, 24.27% and 57.78% respectively. Besides, there is also increase in content of trace element, B, Cu, and Zn. On the basis of analysis, we put forward the new theory of crop cultivation "root" theory.展开更多
The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The...The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.展开更多
Global climate changes result in the expansion of lower elevation plants to higher elevations.The rapid upward expansion of herbaceous plants into the alpine tundra on Changbai Mountain resulted in changes in differen...Global climate changes result in the expansion of lower elevation plants to higher elevations.The rapid upward expansion of herbaceous plants into the alpine tundra on Changbai Mountain resulted in changes in different levels of ecosystem organization.However,the responses and feedback of litter properties and soil mesofauna to herbaceous plants expansion have not been studied yet.To understand the mechanisms underlying those changes,we conducted a field experiment in the range of 2250-2300 m in the alpine tundra of the Changbai Mountain and collected a total of 288 samples from four degrees of herbaceous plants expansion to study the litter physiochemical properties,soil mesofauna,and soil nutrient contents,and their relationships in that tundra ecosystem suffered from various degrees of herbaceous invasion.We found that herbaceous plant expansion is responsible for a major shift in the dominant species of soil mesofauna from mites to collembolan and has significant impacts on the community structure(R2=0.54,p=0.001)and diversity of soil mesofauna(Shannon-Weiner index,p=0.01).The increasing herbaceous plant expansion resulted in a significant increase in litter biomass from 91 g·m^(-2) in the original tundra vegetation(OIT)to 118 g·m^(-2) in the moderately invaded tundra(MIT),and an increase in litter thickness from 2.37 cm(OIT)to 3.05 cm(MIT).And,the litter total nitrogen content significantly increased,but the values of the litter carbon content,the lignin content,the C/N ratio,and the lignin/N ratio decreased with increased herbaceous coverage(both p<0.05).The litter physical properties pathway(biomass and thickness)directly explained 31% of the total variance in soil mesofauna diversity and 59% of the total variance in soil mesofauna community composition.Furthermore,both the soil available nutrients(incl.AN and AP)and plant biomass(incl.the total plant biomass and herbs/shrubs biomass)significantly increased with increasing coverage of herbaceous plant(both p<0.05),and litter chemical properties pathway directly explained 50% of the soil nutrient content variance and indirectly explained 20% of soil nutrient by affecting soil mesofauna.We found that both soil available nutrients and soil mesofauna were positively correlated with the herbaceous expansion from OIT to MIT,indicating a positive feedback of herbaceous expansion,and the abundance of soil mesofauna decreased in the severely invaded tundra vegetation,suggesting a negative feedback.While,both litter N content and soil available nitrogen were consistently increased in the severely invaded tundra vegetation,indicating a positive feedback of herbaceous expansion.Therefore,this study provides new insights into the process of herbaceous plant expansion into tundra,and provides possible evidence for further expansion according to responses and feedback of in litter properties and soil mesofauna to herbaceous plants expansion.Furthermore,these positive or/and negative feedback systems in the Changbai alpine tundra ecosystem in relation to herbaceous expansion have important implications for the tundra protection,and thus,need to be deeply studied.展开更多
The remediation of crude oil-impacted soil has always been a challenge in different soil environments and climatic conditions. Bioremediation technology has offered a breakthrough in restoring crude oil-impacted soil/...The remediation of crude oil-impacted soil has always been a challenge in different soil environments and climatic conditions. Bioremediation technology has offered a breakthrough in restoring crude oil-impacted soil/sediment in muddy, dry soil and wetlands. Though, there have been varied environmental conditions that have hampered the success of the bioremediation process. This study has evaluated the effectiveness of a biostimulated bioremediation of crude oil-impacted soil using some design criteria—nutrient amendment (NPK fertilizer) and moisture content. Soil sample sets—A, B, C, D, E, F, and G were impacted with crude oil at a ratio of 10 g/kg and amended with varying amounts of nutrient 30, 60, and 80 g of N.P.K fertilizer. The medium for the inoculation of the nutrient was water and the volume of water applied varied from 30% to 80% saturation. The soil sample sets were harvested at an interval of 3 months for 180 days to determine the concentration of total petroleum hydrocarbon left in the soil. The analysis of the total petroleum hydrocarbon was achieved using a GC-FID with a capillary column and autosampler. Soil samples were extracted with mixed solvent dichloromethane and acetone at a 1:1 ratio. The total petroleum hydrocarbon results show that biostimulated bioremediation achieved better results in soil sample sets with low moisture content (30% water saturation) and moderate nutrient amendment. The biodegradation of the sample sets with high water saturation and a high nutrient amendment was slow with a higher amount of total hydrocarbon content at the end of the 180 days. The variability in the hydrocarbon degradation pattern of contaminated soil shows that biostimulated bioremediation achieved better results in soils with low moisture content than in soil environments with high water content (saturation). More so, nutrient overdosing of the substrate hampered the effectiveness of the remediation process.展开更多
基金Guangxi Science and Technology Plan Project(Gui Ke AD17195026&Gui Ke AD19259007)Science and Technology Development Fund Project of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2016ZX11)Fund Project of Guangxi Academy of Agricultural Sciences(2019ZX121).
文摘[Objectives]To evaluate the status of soil nutrient and fertility in main dry farming regions of Laos,and to explore differences in soil nutrient content between regions and crop types.[Methods]By collecting 57 soil samples in the 0-20 cm layer of the main dryland in southern and northern provinces of Laos.Soil pH,organic matter,total nitrogen,available nitrogen,available phosphorus,available potassium,exchangeable calcium,exchangeable magnesium and available zinc content were analyzed.[Results]The soil in the main dry farming regions of Laos was acidic,the overall fertility level was good,and the exchangeable calcium and magnesium contents were low.There were differences in soil nutrient content in the dry farming regions of southern and northern Laos.Drylands where cassava and maize were growed had higher fertility.[Conclusions]It is suggested to apply lime or alkaline fertilizer in the dry land with acid soil to increase soil pH and increase the supply of soil calcium and magnesium.Organic fertilizer should be applied to improve soil water retention capacity,and it is necessary to pay attention to the fertilization ratio of macroelements to balance fertilization.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China (201503125,201503105)the National High Technology Research and Development Program of China (2011AA100504)
文摘Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.
基金Supported by National Nonprofit Institute Research Grant of CATAS-TCGRI(1630032016015)Natural Science Foundation of Hainan Province(317264)
文摘The annual dynamic changes of nutrient content in soil and leaves of adult Areca catechu trees in the A.catechu producing area Tunchang were studied by fixed point observation method to provide the scientific basis for the rational fertilization of A.catechu.The results showed that the soil of the A.catechu plantation was weakly acidic on the whole,and soil pH was 5.53.Soil phosphorus content was extremely low,only 5.46 mg/kg.Nitrogen content in A.catechu leaves was the highest( up to 20.24 g/kg),while phosphorus content was the lowest( only 0.31 g/kg).The differences in nutrient content were related to the characteristics of nutrient demand.There was a difference in nutrient content of A.catechu leaves during the annual growth period.Because the maximum nutrient requirement period of A.catechu trees was from April to September,the important fertilization period of A.catechu trees was also from April to September.
文摘This study examined changes in some soil hydrophysical, chemical properties and wheat yield (grain;straw yield, N, P, K, Protein and carbohydrates contents) as trends under two cultivated period 10 and 25 year and Farm Yard manure (FYM) addition under sprinkler irrigation system on a newly reclaimed soils, Nubaria, Beheira Governorate, Egypt. Obtained results noticed that cultivation period has more pronounced effect than FYM addition on soil water content at field capacity, wilting point and available water with increase percent 15.1%, 9.3%;19.0% and 25.7%, 19.5% and 30.0% for FYM and cultivation period comparing with control one. Hydraulic conductivity values were strongly affected by cultivation period and FYM addition and significantly decreased values by about 18.9% and 12.1% in same sequences. Wheat straw content from protein had a superior effect under 25 than 10 years cultivated periods with values 61.9 and 6.7 comparing with control, respectively as affected by FYM addition, while FYM alone improved protein content in straw by about 31.9% comparing with untreated one. Slightly increase in straw protein content was attained relative to the increase of cultivated period by about 7.8%. Nutrients content in grain is more than FYM, where the increase percentage were 5.2%, 13.5%;3.8% and 26.5, 21.3;22.6 comparing cultivated periods 25 with 10 years and FYM addition with control, respectively. FYM individually under two studied cultivated periods is more effective under 10 years (28.0%, 25.2%;15.1%) than the 2nd one (25.1%, 25.2%;15.1%) comparing with untreated FYM plots. While N, P and K content in wheat straw had unclear trend and the increase were 6.8, 23.23;56.5% and 62.9, 6.0;29.8 as a result of FYM addition under 10 and 25 years cultivated periods, respectively. The highest values of protein and carbohydrates content in wheat grains as affected by studied factors were 12.86% and 67.43%) were obtained under cultivated period 25 years after FYM addition. Cultivated periods had a highly significant effect on the field water use efficiency values of grain more than the effect of FYM. The highest values of grain and straw yield were recorded at 10 years cultivated periods + treated FYM (2966.8 kg/fed) and 25 years cultivated periods treated with FYM (3835.6 kg/fed). Cultivated periods increased grain and straw yield of wheat crop by about 57.6% and 8.3%. Whereas, FYM increased grain and straw yield by about 39.8% and 58.8% relative to the control, respectively.
基金Supported by Key R&D Program of Hainan Province in 2021(ZDYF2021XDNY152).
文摘[Objectives]To investigate the changes in soil organic matter,nitrogen and phosphorus content in the decomposition process of Korla fragrant pear branches by indoor mixed culture.[Methods]The branches of Korla fragrant pear in the orchard were collected and returned to the field for a period of 150 d for indoor mixed culture.[Results]Different ages of Korla fragrant pear branches have different effects on soil nutrient content during the simulated return to field decomposition process.Compared with the control in the same period,the treatment of returning to field reached a significant level(P<0.05).Compared with the control,the average values of organic matter,total nitrogen and available phosphorus content in treatment 1 and treatment 2 increased by 2.16 times and 1.93 times,61%and 59%,5.88 times and 6.88 times,respectively;compared with the control,the average increase performance of the alkaline hydrolysis nitrogen content of the two treatments was basically the same,and the treatment 2 was the best;compared with the control,the average total phosphorus content of treatment 1 and treatment 2 increased but not significantly.[Conclusions]The contents of soil organic matter,nitrogen and phosphorus were all increased during the decomposition of pear branches,and the overall improvement effect of 10-year-old trees was better than that of 5-year-old trees.Returning the pruned branches to the field can provide a reliable theoretical basis for solving the problem of organic fertilizer shortage in orchards,and also can ensure technical support for improving soil fertility and improving the rhizosphere micro-environment of pear trees.
文摘In this study,three different ages of Larix principis-rupprechtii forests in 5,10 and 20 years were selected as the research objects,and the changes in soil nutrient and soil enzyme activities in different growth stages were analyzed. The results showed that the contents of organic matter and available phosphorus in the soil of different growth stages showed a significant downward trend with the increase of soil depth.For different forest ages in the same soil layer,the soil available phosphorus content declined with the increase of the forest age. The organic matter content of 40-60 cm in 20 years of forest age was the lowest in July,which was 4. 17 g/kg,significantly lower than that in other soil layers. Besides,the soil available phosphorus content of 5 years of forest age reached the maximum in July,with an average of 4. 44 mg/kg,which was higher than the available phosphorus content in soil in May and September,but the difference between the three months was not significant. The changes in ammonium nitrogen and nitrate nitrogen content in soil with different forest ages were consistent with the changes in the soil depth,showing a downward trend. In the new leaf stage,the ammonium nitrogen content of the L. principis-rupprechtii forest land in5 years of age at 20-40 and 40-60 cm of the soil depth was 13. 47 and 9. 09 mg/kg,respectively,which was 46. 9% and 64. 2% lower than that at 0-20 cm( 25. 36 mg/kg) of the soil depth. The soil nitrate nitrogen content of 20 years of forest age was 19. 24 mg/kg,which was25. 8% lower than that of 10 years of forest age,showing significant difference( P < 0. 05). In addition,with the increase of the age of L. principis-rupprechtii,soil catalase( CAT),alkaline phosphatase( ALP) and urease( Ure) decreased,and the decline of ALP was slow,while CAT and Ure decreased significantly. In summary,it is concluded that the soil fertility of forest land declined with the increase of forest age on the basis of change trend of soil nutrient and soil enzyme activity in the surveyed forest age.
基金Supported by Research and Development Project of Yongning District,Nanning City,Guangxi(20170103B)
文摘Based on the investigation of 56 soil samples( 0-30 cm) in citrus orchards of Guangxi,the content of soil organic matter and available nutrients as well as their correlations in the citrus orchards were studied. The results showed that soil was rich in organic matter,and the proportion of soil samples deficient in available N,P and K was 30. 36%,32. 14% and 28. 57% respectively. Soil was seriously deficient in soil available Ca,Mg and B,while the content of soil available Fe and Cu in soil was too high. There were significant or extremely significant positive or negative correlations between soil pH,organic matter and several available nutrients. It is recommended to apply Mg fertilizer,B fertilizer,lime or other alkaline fertilizer and reduce the spraying of fungicides containing Cu in the citrus orchards.
基金Supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2007BAD75B03)National Cassava Industrial Technological System(nycytx-17)National Public Benefit Program for Agriculture(HY200903022)
文摘Taking 0-30 cm, 0-40 cm, 0-50 cm, 0-60 cm of dry land Fenlong and 0-40 cm paddy field as samples of soil profile with corresponding original soil as the control group, we measured content of organic matter, quick-acting N, quick-acting P and quick-acting K, effective B, Cu, Zn and Mn. Results indicate that available nutrients in soil after Fenlong were higher than original soil. For dry land, the increase of organic matter, quick-acting N, quick-acting P and quick-acting K is 3.02%-35.16%, 6.80%-39.54%, 2.81%-44.46%, and 7.72%-53.71% respectively. There is also increase in effective content of trace element, B, Cu, Zn and Mn. For paddy field, the increase of organic matter, quick-acting N, P and K is 19.64%, 24.02%, 24.27% and 57.78% respectively. Besides, there is also increase in content of trace element, B, Cu, and Zn. On the basis of analysis, we put forward the new theory of crop cultivation "root" theory.
文摘The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.
基金funded by the Natural Science Foundation of China(Grants No.41571078 and 41171072)。
文摘Global climate changes result in the expansion of lower elevation plants to higher elevations.The rapid upward expansion of herbaceous plants into the alpine tundra on Changbai Mountain resulted in changes in different levels of ecosystem organization.However,the responses and feedback of litter properties and soil mesofauna to herbaceous plants expansion have not been studied yet.To understand the mechanisms underlying those changes,we conducted a field experiment in the range of 2250-2300 m in the alpine tundra of the Changbai Mountain and collected a total of 288 samples from four degrees of herbaceous plants expansion to study the litter physiochemical properties,soil mesofauna,and soil nutrient contents,and their relationships in that tundra ecosystem suffered from various degrees of herbaceous invasion.We found that herbaceous plant expansion is responsible for a major shift in the dominant species of soil mesofauna from mites to collembolan and has significant impacts on the community structure(R2=0.54,p=0.001)and diversity of soil mesofauna(Shannon-Weiner index,p=0.01).The increasing herbaceous plant expansion resulted in a significant increase in litter biomass from 91 g·m^(-2) in the original tundra vegetation(OIT)to 118 g·m^(-2) in the moderately invaded tundra(MIT),and an increase in litter thickness from 2.37 cm(OIT)to 3.05 cm(MIT).And,the litter total nitrogen content significantly increased,but the values of the litter carbon content,the lignin content,the C/N ratio,and the lignin/N ratio decreased with increased herbaceous coverage(both p<0.05).The litter physical properties pathway(biomass and thickness)directly explained 31% of the total variance in soil mesofauna diversity and 59% of the total variance in soil mesofauna community composition.Furthermore,both the soil available nutrients(incl.AN and AP)and plant biomass(incl.the total plant biomass and herbs/shrubs biomass)significantly increased with increasing coverage of herbaceous plant(both p<0.05),and litter chemical properties pathway directly explained 50% of the soil nutrient content variance and indirectly explained 20% of soil nutrient by affecting soil mesofauna.We found that both soil available nutrients and soil mesofauna were positively correlated with the herbaceous expansion from OIT to MIT,indicating a positive feedback of herbaceous expansion,and the abundance of soil mesofauna decreased in the severely invaded tundra vegetation,suggesting a negative feedback.While,both litter N content and soil available nitrogen were consistently increased in the severely invaded tundra vegetation,indicating a positive feedback of herbaceous expansion.Therefore,this study provides new insights into the process of herbaceous plant expansion into tundra,and provides possible evidence for further expansion according to responses and feedback of in litter properties and soil mesofauna to herbaceous plants expansion.Furthermore,these positive or/and negative feedback systems in the Changbai alpine tundra ecosystem in relation to herbaceous expansion have important implications for the tundra protection,and thus,need to be deeply studied.
文摘The remediation of crude oil-impacted soil has always been a challenge in different soil environments and climatic conditions. Bioremediation technology has offered a breakthrough in restoring crude oil-impacted soil/sediment in muddy, dry soil and wetlands. Though, there have been varied environmental conditions that have hampered the success of the bioremediation process. This study has evaluated the effectiveness of a biostimulated bioremediation of crude oil-impacted soil using some design criteria—nutrient amendment (NPK fertilizer) and moisture content. Soil sample sets—A, B, C, D, E, F, and G were impacted with crude oil at a ratio of 10 g/kg and amended with varying amounts of nutrient 30, 60, and 80 g of N.P.K fertilizer. The medium for the inoculation of the nutrient was water and the volume of water applied varied from 30% to 80% saturation. The soil sample sets were harvested at an interval of 3 months for 180 days to determine the concentration of total petroleum hydrocarbon left in the soil. The analysis of the total petroleum hydrocarbon was achieved using a GC-FID with a capillary column and autosampler. Soil samples were extracted with mixed solvent dichloromethane and acetone at a 1:1 ratio. The total petroleum hydrocarbon results show that biostimulated bioremediation achieved better results in soil sample sets with low moisture content (30% water saturation) and moderate nutrient amendment. The biodegradation of the sample sets with high water saturation and a high nutrient amendment was slow with a higher amount of total hydrocarbon content at the end of the 180 days. The variability in the hydrocarbon degradation pattern of contaminated soil shows that biostimulated bioremediation achieved better results in soils with low moisture content than in soil environments with high water content (saturation). More so, nutrient overdosing of the substrate hampered the effectiveness of the remediation process.