期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design and Grasping Force Modeling for a Soft Robotic Gripper with Multi-stem Twining
1
作者 Yu Shan Yanzhi Zhao +3 位作者 Hongnian Yu Changlei Pei Zhaopeng Jin Yue Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2123-2134,共12页
To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being ... To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks. 展开更多
关键词 soft robotic gripper Multi-stem twining ADAPTABILITY Grasping force model
原文传递
An effective nonlinear dynamic formulation to analyze grasping capability of soft pneumatic robotic gripper
2
作者 Qiping Xu Chenhang Ying +2 位作者 Kehang Zhang Huiyu Xie Shiju E 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第3期405-431,共27页
Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction o... Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction over conventional stiff counterparts.Previously simplified rod-based models prin-cipally focused on clarifying overall large deformation and bending postures of soft grippers from static or quasi-static perspectives,whereas it is challenging to elaborate grasping characteristics of soft grippers without considering contact interaction and nonlinear large deformation behaviors.To address this,based on absolute nodal coordinate formulation(ANCF),comprehensively allowing for structural complexity,geometric,material and boundary nonlinearities,and incorpor-ating Coulomb’friction law with a multiple-point contact method,we put forward an effective nonlinear dynamic mod-eling approach for exploring grasping capability of soft grip-per.Moreover,we solved the established dynamic equations using Generalized-αscheme,and conducted thorough numer-ical simulation analysis on a three-jaw soft pneumatic gripper(SPG)in terms of grasping configurations,displacements and contact forces.The proposed dynamic approach can accurately both describe complicated deformed configurations along with stress distribution and provide a feasible solution to simulate grasping targets,whose effectiveness and precision were analyzed theoretically and verified experimentally,which may shed new light on devising and optimizing other multi-functional SPGs. 展开更多
关键词 Nonlinear dynamic formulation soft pneumatic robotic grippers contact interaction grasping capability configuration variations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部