期刊文献+
共找到589篇文章
< 1 2 30 >
每页显示 20 50 100
Massive sarcomerogenesis in human skeletal muscle following long-term eccentric exercise intervention
1
作者 Heiliane de Brito Fontana Walter Herzog 《Journal of Sport and Health Science》 2025年第1期64-66,共3页
Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow f... Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow for sarcomerogenesis are not fully understood.In some diseases,such as cerebral palsy in children,sarcomerogenesis appears to be inhibited or at least reduced,1,2 often causing severe restrictions in muscle and joint function. 展开更多
关键词 long term eccentric exercise sarcomerogenesis serial sarcomeres muscle joint function skeletal muscle myofibrils fibresis skeletal muscle
在线阅读 下载PDF
Roles of N-cadherin in cerebral cortical development:cooperation with membrane trafficking and actin cytoskeletal regulation
2
作者 Shiho Ito Takeshi Kawauchi 《Neural Regeneration Research》 SCIE CAS 2025年第1期188-190,共3页
Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junc... Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins. 展开更多
关键词 CEREBRAL skeletal COOPERATION
在线阅读 下载PDF
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction
3
作者 Said Hashemolhosseini Lea Gessler 《Neural Regeneration Research》 SCIE CAS 2025年第9期2464-2479,共16页
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways... Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review. 展开更多
关键词 canonical Wnt"Wingless-related integration site"pathway beta-catenin(CTNNB1) Hippo pathway MYOGENESIS MYOTUBE neuromuscular junction satellite cell skeletal muscle fiber transcriptional co-activator with PDZ-binding motif(TAZ) T-cell-specific transcription factor/lymphoid enhancer-binding factor(TCF/LEF) TEA domain family member(TEAD) transducin-like enhancer of split(TLE) yes-associated protein 1(YAP1)
在线阅读 下载PDF
Unlocking the secrets of exercise:A pathway to enhanced insulin sensitivity and skeletal muscle health in type 2 diabetes
4
作者 Juleen R.Zierath Aidan J.Brady +2 位作者 Kirstin A.Macgregor Joaquin Ortiz de Zevallos Ben Stocks 《Journal of Sport and Health Science》 2025年第2期71-74,共4页
1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site o... 1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site of insulin resistance,with impaired insulin signaling and reduced glucose transport activity contributing to metabolic dysfunction. 展开更多
关键词 impaired insulin signaling metabolic dysfunction muscle function type diabetes insulin sensitivity reduced glucose transport activity skeletal muscle
在线阅读 下载PDF
Krill oil attenuates obesity-induced skeletal muscle atrophy in mice
5
作者 Mengqing Zhou Yuhong Yang +7 位作者 Yan Zheng Zijian Wu Chen Chen Qijian Liang Yu Yang Hao Wu Xin Guo Lei Du 《Food Science and Human Wellness》 2025年第1期250-261,共12页
Obesity is associated with skeletal muscle mass loss and physical dysfunction.Krill oil(KO)has been shown to be beneficial in human health.However,the effect of KO on obesity-induced skeletal muscle atrophy is still u... Obesity is associated with skeletal muscle mass loss and physical dysfunction.Krill oil(KO)has been shown to be beneficial in human health.However,the effect of KO on obesity-induced skeletal muscle atrophy is still unclear.In this study,the male C57BL/6J mice were fed a high-fat diet(HFD)for 12 weeks to induce obesity,and then were intragastric administration with 400 mg/kg bw KO for an additional 6 weeks.The results showed that KO treatment reduced body weight,fat accumulation and serum pro-inflammatory cytokines in HFD-induced obese mice.Importantly,KO treatment attenuated skeletal muscle atrophy in HFD-fed mice,as evidenced by preserving skeletal muscle mass,average myofiber cross-sectional area and grip strength.KO administration also mitigated obesity-induced ectopic lipid deposition and inflammatory response in skeletal muscle.Additionally,KO treatment inhibited the transcriptional activities of nuclear factor-κB(NF-κB)p65 and forkhead box O 3a(FoxO3a),and then down-regulated muscle atrophy F-box(MAFbx)and muscle-specific RING finger protein 1(MuRF1)protein levels in skeletal muscle from HFD-fed mice.KO administration also improved obesity-induced impaired muscle protein synthesis via activating PI3K/Akt pathway.Furthermore,KO treatment enhanced muscle mitochondrial biogenesis in HFD-induced obese mice via activating PGC-1αpathway.Collectively,KO might be developed as a potential nutritional supplement for the prevention and treatment of obesity-induced skeletal muscle atrophy. 展开更多
关键词 OBESITY skeletal muscle atrophy INFLAMMATION Protein turnover Mitochondrial biogenesis
在线阅读 下载PDF
20-Hydroxyecdysone Partially Alleviates Ischemia/Reperfusion-Induced Damage of Mouse Hind Limb Skeletal Muscle
6
作者 Alena A.Semenova Anastasia D.Igoshkina +7 位作者 Alena A.Cherepanova Natalia V.Mikina Anastasia E.Stepanova Olga E.Krasnoshchekova Vyacheslav A.Sharapov Rimma G.Savchenko Lyudmila V.Parfenova Mikhail V.Dubinin 《BIOCELL》 2025年第3期437-450,共14页
Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effec... Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effects of 20-hydroxyecdysone(20E)on hindlimb skeletal tissue following tourniquet-induced ischemia/reperfusion injury.Methods:Animals were divided into 4 groups—control group(Control),Control+20E(C+20E),mice with IRI(IRI),and mice with IRI+20E(IRI+20E).IRI was modeled by applying a tourniquet to the hind limb for 2 h with reperfusion for 1 h.5 mg/kg of 20E was administered intraperitoneally for 14 days.Afterward,the physical activity of mice,the histological structure of the quadriceps femoris,the expression of genes encoding proteins induced by hypoxia and involved in tissue adaptation to ischemia,and the functional parameters of skeletal muscle mitochondria were assessed.Results:It was shown that IRI of the limbs leads to functional disorders,depression of muscle function,accumulation of malondialdehyde(MDA)in mitochondria,and a decrease in their Ca2+buffering capacity,as well as an increase in the expression of HIF-1α,VGEF-A,PGC1αand PDGF-BB genes associated with adaptation to ischemia.20E reduced the intensity of degenerative processes in skeletal muscles,which was expressed in a decrease in the number of centrally nucleated fibers.Analysis of gene expression levels indicated a high degree of adaptation of animals to IRI.20E reduced the level of MDA in mitochondria,but did not affect the rate of respiration and calcium retention capacity of organelles both in normal conditions and during IRI.Conclusion:20E partially alleviates the skeletal muscle damage caused by IRI and can be used as part of combination therapy. 展开更多
关键词 skeletal muscle ISCHEMIA/REPERFUSION 20-HYDROXYECDYSONE MITOCHONDRIA oxidative stress
在线阅读 下载PDF
Improved superelastic Ni-Ti alloy wire for treating skeletal class III malocclusion combined with anterior crossbite:A case report
7
作者 Yu-Hsiang Sean Chang Yuan-Hou Chen Jian-Hong Yu 《World Journal of Clinical Cases》 2025年第18期34-45,共12页
BACKGROUND Correcting skeletal class III malocclusion with anterior crossbite in adolescents using only orthodontic treatment poses challenges.This report highlights a novel approach leveraging improved superelastic N... BACKGROUND Correcting skeletal class III malocclusion with anterior crossbite in adolescents using only orthodontic treatment poses challenges.This report highlights a novel approach leveraging improved superelastic Ni-Ti alloy wire(ISW)to address these conditions effectively.CASE SUMMARY A 17-year-old male patient presented with the chief complaint of an underbite.The patient was given a diagnosis of skeletal class III malocclusion and anterior crossbite.The orthodontic treatment plan was implemented and did not require teeth extractions or orthognathic surgery.Key interventions involved the app-lication of ISW,intermaxillary elastics,and ISW unilateral multi-bend edgewise archwire.The unique combination of these techniques enabled the correction without the need for extractions or surgery.This approach leverages the advanced biomechanical properties of ISW,including its super-elasticity and shape memory,to enhance treatment efficacy.The treatment lasted 17 months,and major improvements in overjet,overbite,and alignment were achieved.The results were favorable,and stability was discovered during follow-up.CONCLUSION The application of ISW for treating skeletal class III malocclusion with anterior crossbite in a 17-year-old male patient resulted in exceptional outcomes.The treatment led to a marked improvement in the patient’s facial profile and to proper overjet,overbite,and midline alignment.These results were maintained over a one-year follow-up,indicating that a minimally invasive orthodontic approach can effectively address complex skeletal discrepancies in adolescent patients.This case illustrates that with the careful use of advanced orthodontic techniques,major skeletal challenges can be resolved without resorting to surgical procedures. 展开更多
关键词 Orthodontics skeletal class III malocclusion Anterior crossbite Improved superelastic Ni-Ti alloy wire Multi-bend edgewise archwire Intermaxillary elastics Case report
在线阅读 下载PDF
Assessment of skeletal muscle alterations and circulating myokines in metabolic dysfunction-associated steatotic liver disease:A crosssectional study
8
作者 Yolanda Real Martinez Carlos Ernesto Fernandez-Garcia +11 位作者 Esther Fuertes-Yebra Mario Calvo Soto Angela Berlana Vicente Barrios Maria Caldas Leticia Gonzalez Moreno Luisa Garcia-Buey Begoña Molina Baena Miguel Sampedro-Nuñez Maria J Beceiro C García-Monzón Águeda González-Rodríguez 《World Journal of Gastroenterology》 2025年第7期63-73,共11页
BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in the... BACKGROUND Skeletal muscle alterations(SMAs)are being increasingly recognized in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD)and appear to be associated with deleterious outcomes in these patients.However,their actual prevalence and pathophysiology remain to be elucidated.AIM To determine the prevalence of SMAs and to assess the significance of circulating myokines as biomarkers in patients with MASLD.METHODS Skeletal muscle strength and muscle mass were measured in a cross-sectional study in a cohort of 62 patients fulfilling MASLD criteria,recruited from the outpatient clinics of a tertiary level hospital.The degree of fibrosis and liver steatosis was studied using abdominal ultrasound and transitional elastography.Anthropometric and metabolic characteristics as well as serum levels of different myokines were also determined in the MASLD cohort.Statistical analysis was performed comparing results according to liver fibrosis and steatosis.RESULTS No significant differences were found in both skeletal muscle strength and skeletal muscle mass in patients with MASLD between different stages of liver fibrosis.Interestingly,serum levels of fibroblast growth factor-21(FGF21)were significantly higher in patients with MASLD with advanced hepatic fibrosis(F3-F4)than in those with lower fibrosis stages(F0-F2)(197.49±198.27 pg/mL vs 95.62±83.67 pg/mL;P=0.049).In addition,patients with MASLD with severe hepatosteatosis(S3)exhibited significantly higher serum levels of irisin(1116.87±1161.86 pg/mL)than those with lower grades(S1-S2)(385.21±375.98 pg/mL;P=0.001).CONCLUSION SMAs were uncommon in the patients with MASLD studied.Higher serum levels of irisin and FGF21 were detected in patients with advanced liver steatosis and fibrosis,respectively,with potential implications as biomarkers. 展开更多
关键词 skeletal muscle alterations MYOKINES Metabolic dysfunction-associated steatotic liver disease Liver fibrosis HEPATOSTEATOSIS
在线阅读 下载PDF
Investigating the Relationship between Age-Related Cardiac Hypertrophy, Skeletal Muscle Strength, and the FNDC5 Protein as a Potential Regulator
9
作者 Tao Feng Ziyang Fang +9 位作者 Yinjun Luo Xin Zhang Ying Li Shijing Ma Jinting Wei Xiaoyan Fang Biao Li Lingling Huang Jinhua Wang Suchan Liao 《Journal of Biosciences and Medicines》 2025年第2期450-464,共15页
Background: Aging-induced cardiac hypertrophy and reduced skeletal muscle strength contribute to increased disease risk and life burden in the elderly. FNDC5 acts as a protective muscle factor in both cardiac and skel... Background: Aging-induced cardiac hypertrophy and reduced skeletal muscle strength contribute to increased disease risk and life burden in the elderly. FNDC5 acts as a protective muscle factor in both cardiac and skeletal muscle. This study aims to examine the relationship between cardiac FNDC5 and aging-related cardiac hypertrophy and decreased skeletal muscle strength. Methods: Male young C57BL/6 mice (5 months old, n = 6) and aged mice (21 months old, n = 6) were utilized in the study and housed in a specific pathogen-free (SPF) environment. Prior to the experiment, grip strength tests were performed on the mice, and heart tissues were collected for morphological analysis, including the assessment of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and fibronectin type III-containing structural domain 5 (FNDC5) protein levels. Furthermore, myosin heavy chain II (MyHC II), skeletal muscle-specific transcription factor (MyoD), muscle RING-finger protein-1 (MuRF1), and FNDC5 levels were evaluated in the quadriceps muscle. The correlations between heart weight and FNDC5 expression levels, as well as skeletal muscle indices in the mice, were subsequently analyzed. Result: Aging leads to cardiac hypertrophy and reduced expression of PGC-1α and FNDC5 proteins. Concurrently, there is a decline in the strength of skeletal muscle, along with decreased expression of MyHC II and increased expression of MURF1 and MyoD. Correlation analysis demonstrated strong positive associations between myocardial FNDC5 protein levels and limb grip strength, as well as MyHC II, and strong negative associations with MyoD and MuRF1. Conclusion: There may be a significant association between aging-induced cardiac hypertrophy and decreased skeletal muscle strength, with FNDC5 potentially playing a crucial role as a regulatory molecule facilitating communication between the heart and skeletal muscle. 展开更多
关键词 AGING Heart Hypertrophy skeletal Muscle FNDC5
在线阅读 下载PDF
PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging 被引量:1
10
作者 Lingqi Xie Yalun Cheng +6 位作者 Biao Hu Xin Chen Yuze An Zhuying Xia Guangping Cai Changjun Li Hui Peng 《Bone Research》 SCIE CAS CSCD 2024年第3期595-610,共16页
Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BM... Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. 展开更多
关键词 skeletal inhibited HOMEOSTASIS
在线阅读 下载PDF
Pannexins in the musculoskeletal system:new targets for development and disease progression 被引量:1
11
作者 Yan Luo Shengyuan Zheng +2 位作者 Wenfeng Xiao Hang Zhang Yusheng Li 《Bone Research》 SCIE CAS CSCD 2024年第2期255-269,共15页
During cell differentiation,growth,and development,cells can respond to extracellular stimuli through communication channels.Pannexin(Panx)family and connexin(Cx)family are two important types of channel-forming prote... During cell differentiation,growth,and development,cells can respond to extracellular stimuli through communication channels.Pannexin(Panx)family and connexin(Cx)family are two important types of channel-forming proteins.Panx family contains three members(Panx1-3)and is expressed widely in bone,cartilage and muscle.Although there is no sequence homology between Panx family and Cx family,they exhibit similar configurations and functions.Similar to Cxs,the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later.Here,we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis,chondrogenesis,and muscle growth.We also focus on the comparison between Cx and Panx.As a new key target,Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed. 展开更多
关键词 skeletal DISEASES SYSTEM
在线阅读 下载PDF
Hybrid treatment of varied orthodontic appliances for a patient with skeletal class II and temporomandibular joint disorders:A case report and review of literature 被引量:1
12
作者 Tong Lu Li Mei +2 位作者 Bao-Chao Li Zi-Wei Huang Huang Li 《World Journal of Clinical Cases》 SCIE 2024年第2期431-442,共12页
BACKGROUND The relation between orthodontic treatment and temporomandibular disorders(TMDs)is under debate;the management of TMD during orthodontic treatment has always been a challenge.If TMD symptoms occur during or... BACKGROUND The relation between orthodontic treatment and temporomandibular disorders(TMDs)is under debate;the management of TMD during orthodontic treatment has always been a challenge.If TMD symptoms occur during orthodontic treatment,an immediate pause of orthodontic adjustments is recommended;the treatment can resume when the symptoms are managed and stabilized.CASE SUMMARY This case report presents a patient(26-year-old,female)with angle class I,skeletal class II and TMDs.The treatment was a hybrid of clear aligners,fixed appliances and temporary anchorage devices(TADs).After 3 mo resting and treatment on her TMD,the patient’s TMD symptom alleviated,but her anterior occlusion displayed deep overbite.Therefore,the fixed appliances with TAD were used to correct the anterior deep-bite and level maxillary and mandibular deep curves.After the levelling,the patient showed dual bite with centric relation and maximum intercuspation discrepancy on her occlusion.After careful examination of temporomandibular joints(TMJ)position,the stable bite splint and Invisible Mandibular Advancement appliance were used to reconstruct her occlusion.Eventually,the improved facial appearance and relatively stable occlusion were achieved.The 1-year follow-up records showed there was no obvious change in TMJ morphology,and her occlusion was stable.CONCLUSION TMD screening and monitoring is of great clinical importance in the TMD susceptible patients.Hybrid treatment with clear aligners and fixed appliances and TADs is an effective treatment modality for the complex cases. 展开更多
关键词 Temporomandibular disorder skeletal class II Deep overbite Dual bite Invisible mandibular advancement appliance Case report
在线阅读 下载PDF
Biology of Hippo signaling pathway:Skeletal muscle development and beyond
13
作者 Shuqi Qin Chaocheng Li +5 位作者 Haiyan Lu Yulong Feng Tao Guo Yusong Han Yongsheng Zhang Zhonglin Tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1825-1838,共14页
Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great o... Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great opportunity to develop advanced molecular breeding markers to efficiently improve animal meat production traits.Hippo is an important study subject because of its crucial role in the regulation of organ size.In recent years,with the increase of research on Hippo signaling pathway,the integrative application of multi-omics technologies such as genomics,transcriptomics,proteomics,and metabolomics can help promote the in-depth involvement of Hippo signaling pathway in skeletal muscle development research.The Hippo signaling pathway plays a key role in many biological events,including cell division,cell migration,cell proliferation,cell differentiation,cell apoptosis,as well as cell adhesion,cell polarity,homeostasis,maintenance of the face of mechanical overload,etc.Its influence on the development of skeletal muscle has important research value for enhancing the efficiency of animal husbandry production.In this study,we traced the origin of the Hippo pathway,comprehensively sorted out all the functional factors found in the pathway,deeply analyzed the molecular mechanism of its function,and classified it from a novel perspective based on its main functional domain and mode of action.Our aim is to systematically explore its regulatory role throughout skeletal muscle development.We specifically focus on the Hippo signaling pathway in embryonic stem cell development,muscle satellite cell fate determination,myogenesis,skeletal muscle meat production and organ size regulation,muscle hypertrophy and atrophy,muscle fiber formation and its transformation between different types,and cardiomyocytes.The roles in proliferation and regeneration are methodically summarized and analyzed comprehensively.The summary and prospect of the Hippo signaling pathway within this article will provide ideas for further improving meat production and muscle deposition and developing new molecular breeding technologies for livestock and poultry,which will be helpful for the development of animal molecular breeding. 展开更多
关键词 HIPPO skeletal muscle organ size MYOGENESIS C2C12 livestock animals
在线阅读 下载PDF
SWIR FluorescenceImaging In Vivo Monitoring and Evaluating Implanted M2 Macrophages in Skeletal Muscle Regeneration
14
作者 Mo Chen Yuzhou Chen +9 位作者 Sijia Feng Shixian Dong Luyi Sun Huizhu Li Fuchun Chen Nguyen Thi Kim Thanh Yunxia Li Shiyi Chen You Wang Jun Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期283-294,共12页
Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challe... Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration. 展开更多
关键词 In vivo Short-wave infrared skeletal muscle MACROPHAGE REGENERATION
在线阅读 下载PDF
Pickering emulsion transport in skeletal muscle tissue:A dissipative particle dynamics simulation approach
15
作者 Xuwei Liu Wei Chen +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期65-75,共11页
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i... Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps. 展开更多
关键词 Pickering emulsion skeletal muscular cells Transport phenomena Dissipative particle dynamics Drug delivery
在线阅读 下载PDF
Catalpa bignonioides extract improves exercise performance through regulation of growth and metabolism in skeletal muscles
16
作者 Hoibin Jeong Dong-joo Lee +11 位作者 Sung-Pil Kwon SeonJu Park Song-Rae Kim Seung Hyun Kim Jae-Il Park Deug-chan Lee Kyung-Min Choi WonWoo Lee Ji-Won Park Bohyun Yun Su-Hyeon Cho Kil-Nam Kim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期47-54,共8页
Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol... Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine(BrdU)assay kit.Western blot analysis was performed to determine the protein expressions of related factors.The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay.Chemical composition analysis was performed using high-performance liquid chromatography(HPLC).Results:Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway.It also induced metabolic changes,increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase.In an in vivo study,the extract-treated mice showed improved motor abilities,such as muscular endurance and grip strength.Additionally,HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength.Conclusions:Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles,suggesting its potential as an effective natural agent for improving muscular strength. 展开更多
关键词 Catalpa bignonioides skeletal muscle Cell proliferation MITOCHONDRIA Energy metabolism C2C12
在线阅读 下载PDF
Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis:a narrative review
17
作者 Peter H.King 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期747-753,共7页
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is ... Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis. 展开更多
关键词 amyotrophic lateral sclerosis biomarkers clinicopathological correlation disease progression muscle biomarkers neurogenic atrophy neuromuscular junction non-coding RNAs presymptomatic stages skeletal muscle SOD1G93A mouse model
在线阅读 下载PDF
Low skeletal muscle mass and high visceral adiposity are associated with recurrence of acute cholecystitis after conservative management:A propensity score-matched cohort study
18
作者 Yudai Koya Michihiko Shibata +5 位作者 Yuki Maruno Yoshitaka Sakamoto Shinji Oe Koichiro Miyagawa Yuichi Honma Masaru Harada 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第1期64-70,共7页
Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity hav... Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity have various effects in several diseases.We aimed to clarify the relationship between RAC and body parameters.Methods:Patients with AC who were treated at our hospital between January 2011 and March 2022 were enrolled.The psoas muscle mass and adipose tissue area at the third lumbar level were measured using computed tomography at the first episode of AC.The areas were divided by height to obtain the psoas muscle mass index(PMI)and subcutaneous/visceral adipose tissue index(SATI/VATI).According to median VATI,SATI and PMI values by sex,patients were divided into the high and low PMI groups.We performed propensity score matching to eliminate the baseline differences between the high PMI and low PMI groups and analyzed the cumulative incidence and predictors of RAC.Results:The entire cohort was divided into the high PMI(n=81)and low PMI(n=80)groups.In the propensity score-matched cohort there were 57 patients in each group.In Kaplan-Meier analysis,the low PMI group and the high VATI group had a significantly higher cumulative incidence of RAC than their counterparts(log-rank P=0.001 and 0.015,respectively).In a multivariate Cox regression analysis,the hazard ratios of low PMI and low VATI for RAC were 5.250(95%confidence interval 1.083-25.450,P=0.039)and 0.158(95%confidence interval:0.026-0.937,P=0.042),respectively.Conclusions:Low skeletal muscle mass and high visceral adiposity were independent risk factors for RAC. 展开更多
关键词 Acute cholecystitis Low skeletal muscle mass Recurrent acute cholecystitis SARCOPENIA Visceral adiposity
在线阅读 下载PDF
Temporal and spatial regulation of biomimetic vascularization in 3D-printed skeletal muscles
19
作者 Minxuan Jia Tingting Fan +3 位作者 Tan Jia Xin Liu Heng Liu Qi Gu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期597-610,共14页
In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay be... In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay between skeletal muscle and endothelial cells in the vascularization ofmuscle tissue.By harnessing the capabilities of three-dimensional(3D)bioprinting and modeling,we developed a novel approach involving the co-construction of endothelial and muscle cells,followed by their subsequent differentiation.Our findings highlight the importance of the interaction dynamics between these two cell types.Notably,introducing endothelial cells during the advanced phases of muscle differentiation enhanced myotube assembly.Moreover,it stimulated the development of the vascular network,paving the way for the early stages of vascularized skeletal muscle development.The methodology proposed in this study indicates the potential for constructing large-scale,physiologically aligned skeletal muscle.Additionally,it highlights the need for exploring the delicate equilibrium and mutual interactions between muscle and endothelial cells.Based on the multicell-type interaction model,we can predict promising pathways for constructing even more intricate tissues or organs. 展开更多
关键词 skeletal muscle VASCULARIZATION 3D bioprinting Cell interaction
在线阅读 下载PDF
Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta
20
作者 Na Li Baohong Shi +16 位作者 Zan Li Jie Han Jun Sun Haitao Huang Alisha R.Yallowitz Seoyeon Bok Shuang Xiao Zuoxing Wu Yu Chen Yan Xu Tian Qin Rui Huang Haiping Zheng Rong Shen Lin Meng Matthew B.Greenblatt Ren Xu 《Bone Research》 SCIE CAS CSCD 2024年第3期675-688,共14页
Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that ... Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. 展开更多
关键词 skeletal imperfect ENDOTHELIUM
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部