Supplier selection can be regarded as a typical multiple attribute decision-making problem. In real-world situation, the values of the alternative attributes and their weights are always being nondeterministic, and as...Supplier selection can be regarded as a typical multiple attribute decision-making problem. In real-world situation, the values of the alternative attributes and their weights are always being nondeterministic, and as a result of this, the values are considered interval numbers. In addition, the common approach to measure the similarity between alternatives through their distance suffers from some minor shortcomings. To address these problems, this study develops a novel hybrid decision-making method by combining the technique for order preference by similarity to an ideal solution (TOPSIS) with grey relational analysis (GRA) for supplier selection with interval numbers. By introducing the intervals theory, the extensions of Euclidean distance and grey relational grade are defined. And then a new comprehensive closeness coefficient is constituted for supplier alternatives evaluation based on the interval Euclidean distance and the interval grey relational grade, which could indicate the distance-based similarity and the shape-based similarity simultaneously. A mtmerical example is taken to validate the flexibility of the proposed method, and result shows that this method can tackle the uncertainty in real-world supplier selection and also help decision makers to effectively select optimal suppliers.展开更多
Heavy-duty machine tools are composed of many subsystems with different functions,and their reliability is governed by the reliabilities of these subsystems.It is important to rank the weaknesses of subsystems and ide...Heavy-duty machine tools are composed of many subsystems with different functions,and their reliability is governed by the reliabilities of these subsystems.It is important to rank the weaknesses of subsystems and identify the weakest subsystem to optimize products and improve their reliabilities.However,traditional ranking methods based on failure mode effect and critical analysis(FMECA)does not consider the complex maintenance of products.Herein,a weakness ranking method for the subsystems of heavy-duty machine tools is proposed based on generalized FMECA information.In this method,eight reliability indexes,including maintainability and maintenance cost,are considered in the generalized FMECA information.Subsequently,the cognition best worst method is used to calculate the weight of each screened index,and the weaknesses of the subsystems are ranked using a technique for order preference by similarity to an ideal solution.Finally,based on the failure data collected from certain domestic heavy-duty horizontal lathes,the weakness ranking result of the subsystems is obtained to verify the effectiveness of the proposed method.An improved weakness ranking method that can comprehensively analyze and identify weak subsystems is proposed herein for designing and improving the reliability of complex electromechanical products.展开更多
Taking 6 residential areas in Nyingchi of Tibet as research objects,from aesthetic effect,ecological function and leisure service,this paper established the evaluation indicator system for plant landscape in residenti...Taking 6 residential areas in Nyingchi of Tibet as research objects,from aesthetic effect,ecological function and leisure service,this paper established the evaluation indicator system for plant landscape in residential areas using AHP,and calculated the weight of indicators using the judgment matrix. Besides,it calculated the ideal solution and closeness degree of matrix using TOPSIS,and established the evaluation method and preference method for plant landscape in residential areas. The results show that the indicators of seasonal variation,environmental benefit and per capita green space mattered most in the landscape evaluation of residential areas. The richness of flowering plant is weak in the landscape evaluation. From the comprehensive evaluation of residential areas,Nyingchi Garden District and Xingfu District have excellent plant landscape,Jialong Garden District and Shangcheng Garden District have general plant landscape,and Sun City District and Niyang Garden District have poor plant landscape.展开更多
An importance analysis model for computer numerical control(CNC)lathe subsystems was proposed.The model was based on technique for order preference by similarity to an ideal solution(TOPSIS)and considered the stru...An importance analysis model for computer numerical control(CNC)lathe subsystems was proposed.The model was based on technique for order preference by similarity to an ideal solution(TOPSIS)and considered the structure correlation between subsystems and the complete machine,the fault correlation of each subsystem and so on.The model can obtain a comprehensive sequencing of subsystems based on their importance to the complete machine.It lays a theoretical foundation for reliability allocation.展开更多
With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matchi...With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.展开更多
Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on th...Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on the improved Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)mode,this study identifies and evaluates the LUMFs in the China-Vietnam border area between 2000 and 2018 from the perspectives of agricultural production,social security,ecological service,landscape recreation,and national security.The results show that:1)The comprehensive land use functions in most counties and cities continued to be improved.2)The comprehensive land use function exhibits remarkable spatial divergence and aggregation characteristics.The high-value area of the agricultural production function and social security function evolves from the east to the west.In addition,the spatial evolution of ecological service function is complicated,without an obvious spatial divergence and aggregation pattern.The landscape recreation function shows different spatial differentiation characteristics in the early and middle stage,and forms a large cluster in the later stage.Finally,the spatial evolution pattern of the national security function is significant.3)Designing differentiated border land policies,improving border land use security,and establishing a long-term mechanism for ecological protection and ecological compensation can aid in optimizing the LUMF level in the border area.展开更多
随着数字经济的快速发展,数字贸易已成为影响经济发展的重要力量。在数字经济背景下探讨数字贸易内涵,从信息网络基础设施、数字技术水平、产业数字化贸易、数字产业化贸易和贸易潜力5个维度构建数字贸易发展评价指标体系,运用相对熵的T...随着数字经济的快速发展,数字贸易已成为影响经济发展的重要力量。在数字经济背景下探讨数字贸易内涵,从信息网络基础设施、数字技术水平、产业数字化贸易、数字产业化贸易和贸易潜力5个维度构建数字贸易发展评价指标体系,运用相对熵的TOPSIS(technique for order preference by similarity to an ideal solution)法对浙江省2010—2018年数字贸易发展水平进行测度。结果表明:2010-2018年浙江省数字贸易发展总体呈上升趋势;进一步基于TOE(technology-organization-environment,技术-组织-环境)框架和灰色关联度模型探讨了数字贸易发展水平的影响因素。实证研究发现:信息化水平、产业结构、政府支持力度、经济发展水平、对外贸易开放水平均能促进浙江省数字贸易发展,其中信息化水平影响最为显著,而对外贸易开放水平的影响最小。展开更多
The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation ...The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.展开更多
It is necessary to determine the degradation path model of products at first when using the method based on degradation path model to evaluate the degradation reliability of products.At present,the degradation path mo...It is necessary to determine the degradation path model of products at first when using the method based on degradation path model to evaluate the degradation reliability of products.At present,the degradation path model is mainly determined by scatter plots of degradation data.However,this method has strong subjectivity and is liable to cause the evaluation results to be inconsistent with the actual situation.In this paper,a degradation reliability analysis method based on TOPSIS(technique for order preference by similarity to an ideal solution)model selection is proposed,and its implementation process is given.The optimal degradation path model is selected according to the calculated proximity.With the help of TOPSIS method,various degradation path models can be selected and quantified,and the original degradation path method can be improved to avoid the risk of errors in product reliability evaluation caused by inaccurate subjective hypo thesis,so as to ensure the objectivity and accuracy in the process of model determination.The validity and practicability of the proposed met hod are verified by the degradation analysis of the injector of a certain type of diesel engine.展开更多
Rural domestic reclaimed water(RDRW)is rural domestic sewage that being safely treated,the irrigation and reuse of RDRW are an effective way to alleviate the contradiction between supply and demand of water resources ...Rural domestic reclaimed water(RDRW)is rural domestic sewage that being safely treated,the irrigation and reuse of RDRW are an effective way to alleviate the contradiction between supply and demand of water resources in South China.In this study,four kinds of irrigation water sources(primary and secondary treated water R1 and R2,purified water R3 and river water CK)and three kinds of water level regulations(low,medium,and high field water level control of W1,W2 and W3)were set to study the impact of RDRW on soil and crop safety,water and nitrogen utilization and biodiversity for establishing the regulation mechanism of RDRW irrigation with field experiment,and monitoring was carried out in RDRW irrigation demonstration area to assess the effectiveness of RDRW.The results showed that,under RDRW irrigation,the contents of Cd and Pb increased slightly,while the contents of Cr,Cu and Zn decreased in paddy soil.The heavy metals content decreased along the direction of stem,leaf and grain in rice plants,but did not increase significantly in rice grains.With the increase of field water level,pharmaceutical and personal care products(PPCPs)content in 60-80 cm soil layer was accumulated,and the PPCPs content in rice husks was higher than that in grains,but it was at a very low level.Compared to CK,RDRW irrigation can effectively increase rice yield,rainwater use efficiency(RUE)and nitrogen use efficiency(NUE)by 5.4%-7.6%,6.7%-9.4%and 21.7%-24.2%,respectively,and the species diversity,community diversity and richness in rice fields were improved.Additionally,water level regulation of W3 with R2 water resource irrigation was conducive to the exertion of comprehensive benefits.The monitoring of demonstration area showed that the consumption of fresh water was reduced by 530 mm,yield was increased by 9.6%,and the soil and crop were both safety.Short-term irrigation of RDRW did not cause soil and crops pollution,however,it is still necessary to track and monitor the effect of the system on soil,crop,and underground water with long-term reclaimed water irrigation.展开更多
基金Project(51505488)supported by the National Natural Science Foundation of China
文摘Supplier selection can be regarded as a typical multiple attribute decision-making problem. In real-world situation, the values of the alternative attributes and their weights are always being nondeterministic, and as a result of this, the values are considered interval numbers. In addition, the common approach to measure the similarity between alternatives through their distance suffers from some minor shortcomings. To address these problems, this study develops a novel hybrid decision-making method by combining the technique for order preference by similarity to an ideal solution (TOPSIS) with grey relational analysis (GRA) for supplier selection with interval numbers. By introducing the intervals theory, the extensions of Euclidean distance and grey relational grade are defined. And then a new comprehensive closeness coefficient is constituted for supplier alternatives evaluation based on the interval Euclidean distance and the interval grey relational grade, which could indicate the distance-based similarity and the shape-based similarity simultaneously. A mtmerical example is taken to validate the flexibility of the proposed method, and result shows that this method can tackle the uncertainty in real-world supplier selection and also help decision makers to effectively select optimal suppliers.
基金Supported by National Nat ural Science Foundation of China(Grant Nos.51675227,51975249)Jilin Province Science and Technology Development Funds(Grant Nos.20180201007GX,20190302017GX)+2 种基金Technology Development and Research of Jilin Province(Grant No.2019C037-01)Changchun Science and Technology Planning Project(Grant No.19SS011)National Science and technology Major Project(Grant No.2014ZX04015031).
文摘Heavy-duty machine tools are composed of many subsystems with different functions,and their reliability is governed by the reliabilities of these subsystems.It is important to rank the weaknesses of subsystems and identify the weakest subsystem to optimize products and improve their reliabilities.However,traditional ranking methods based on failure mode effect and critical analysis(FMECA)does not consider the complex maintenance of products.Herein,a weakness ranking method for the subsystems of heavy-duty machine tools is proposed based on generalized FMECA information.In this method,eight reliability indexes,including maintainability and maintenance cost,are considered in the generalized FMECA information.Subsequently,the cognition best worst method is used to calculate the weight of each screened index,and the weaknesses of the subsystems are ranked using a technique for order preference by similarity to an ideal solution.Finally,based on the failure data collected from certain domestic heavy-duty horizontal lathes,the weakness ranking result of the subsystems is obtained to verify the effectiveness of the proposed method.An improved weakness ranking method that can comprehensively analyze and identify weak subsystems is proposed herein for designing and improving the reliability of complex electromechanical products.
文摘Taking 6 residential areas in Nyingchi of Tibet as research objects,from aesthetic effect,ecological function and leisure service,this paper established the evaluation indicator system for plant landscape in residential areas using AHP,and calculated the weight of indicators using the judgment matrix. Besides,it calculated the ideal solution and closeness degree of matrix using TOPSIS,and established the evaluation method and preference method for plant landscape in residential areas. The results show that the indicators of seasonal variation,environmental benefit and per capita green space mattered most in the landscape evaluation of residential areas. The richness of flowering plant is weak in the landscape evaluation. From the comprehensive evaluation of residential areas,Nyingchi Garden District and Xingfu District have excellent plant landscape,Jialong Garden District and Shangcheng Garden District have general plant landscape,and Sun City District and Niyang Garden District have poor plant landscape.
基金Supported by the Project of Jilin Province(20150101025JC)the National Natural Science Foundation of China(51175222)
文摘An importance analysis model for computer numerical control(CNC)lathe subsystems was proposed.The model was based on technique for order preference by similarity to an ideal solution(TOPSIS)and considered the structure correlation between subsystems and the complete machine,the fault correlation of each subsystem and so on.The model can obtain a comprehensive sequencing of subsystems based on their importance to the complete machine.It lays a theoretical foundation for reliability allocation.
文摘With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.
基金Under the auspices of National Natural Science Project(No.42161046)National Social Science Project(No.21CJY075)+2 种基金Guangxi Natural Science Project(No.2021JJB150070)Guangxi Philosophy and Social Science Project(No.20FJY027)Guangxi First-class Discipline Applied Economics Construction Project Fund(Guangxi Education and Scientific Research(No.[2022]No.1))。
文摘Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on the improved Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)mode,this study identifies and evaluates the LUMFs in the China-Vietnam border area between 2000 and 2018 from the perspectives of agricultural production,social security,ecological service,landscape recreation,and national security.The results show that:1)The comprehensive land use functions in most counties and cities continued to be improved.2)The comprehensive land use function exhibits remarkable spatial divergence and aggregation characteristics.The high-value area of the agricultural production function and social security function evolves from the east to the west.In addition,the spatial evolution of ecological service function is complicated,without an obvious spatial divergence and aggregation pattern.The landscape recreation function shows different spatial differentiation characteristics in the early and middle stage,and forms a large cluster in the later stage.Finally,the spatial evolution pattern of the national security function is significant.3)Designing differentiated border land policies,improving border land use security,and establishing a long-term mechanism for ecological protection and ecological compensation can aid in optimizing the LUMF level in the border area.
文摘随着数字经济的快速发展,数字贸易已成为影响经济发展的重要力量。在数字经济背景下探讨数字贸易内涵,从信息网络基础设施、数字技术水平、产业数字化贸易、数字产业化贸易和贸易潜力5个维度构建数字贸易发展评价指标体系,运用相对熵的TOPSIS(technique for order preference by similarity to an ideal solution)法对浙江省2010—2018年数字贸易发展水平进行测度。结果表明:2010-2018年浙江省数字贸易发展总体呈上升趋势;进一步基于TOE(technology-organization-environment,技术-组织-环境)框架和灰色关联度模型探讨了数字贸易发展水平的影响因素。实证研究发现:信息化水平、产业结构、政府支持力度、经济发展水平、对外贸易开放水平均能促进浙江省数字贸易发展,其中信息化水平影响最为显著,而对外贸易开放水平的影响最小。
基金supported by the National Natural Science Foundation of China(41804035,41374027)。
文摘The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.
基金the National Natural Science Foundation of China(No.61463021)the Young Scientists Object Program of Jiangxi Province(No.20144BCB23037)the Natural Science Foundation of Jiangxi Province(No.20181BAB202020)
文摘It is necessary to determine the degradation path model of products at first when using the method based on degradation path model to evaluate the degradation reliability of products.At present,the degradation path model is mainly determined by scatter plots of degradation data.However,this method has strong subjectivity and is liable to cause the evaluation results to be inconsistent with the actual situation.In this paper,a degradation reliability analysis method based on TOPSIS(technique for order preference by similarity to an ideal solution)model selection is proposed,and its implementation process is given.The optimal degradation path model is selected according to the calculated proximity.With the help of TOPSIS method,various degradation path models can be selected and quantified,and the original degradation path method can be improved to avoid the risk of errors in product reliability evaluation caused by inaccurate subjective hypo thesis,so as to ensure the objectivity and accuracy in the process of model determination.The validity and practicability of the proposed met hod are verified by the degradation analysis of the injector of a certain type of diesel engine.
基金supported by National Key Research and Development Program(2019YFC0408803)Basic Public Welfare Research Project of Zhejiang Province(LGN20E090001)and Water conservancy science and technology in Zhejiang Province(RC1918,RC2029).
文摘Rural domestic reclaimed water(RDRW)is rural domestic sewage that being safely treated,the irrigation and reuse of RDRW are an effective way to alleviate the contradiction between supply and demand of water resources in South China.In this study,four kinds of irrigation water sources(primary and secondary treated water R1 and R2,purified water R3 and river water CK)and three kinds of water level regulations(low,medium,and high field water level control of W1,W2 and W3)were set to study the impact of RDRW on soil and crop safety,water and nitrogen utilization and biodiversity for establishing the regulation mechanism of RDRW irrigation with field experiment,and monitoring was carried out in RDRW irrigation demonstration area to assess the effectiveness of RDRW.The results showed that,under RDRW irrigation,the contents of Cd and Pb increased slightly,while the contents of Cr,Cu and Zn decreased in paddy soil.The heavy metals content decreased along the direction of stem,leaf and grain in rice plants,but did not increase significantly in rice grains.With the increase of field water level,pharmaceutical and personal care products(PPCPs)content in 60-80 cm soil layer was accumulated,and the PPCPs content in rice husks was higher than that in grains,but it was at a very low level.Compared to CK,RDRW irrigation can effectively increase rice yield,rainwater use efficiency(RUE)and nitrogen use efficiency(NUE)by 5.4%-7.6%,6.7%-9.4%and 21.7%-24.2%,respectively,and the species diversity,community diversity and richness in rice fields were improved.Additionally,water level regulation of W3 with R2 water resource irrigation was conducive to the exertion of comprehensive benefits.The monitoring of demonstration area showed that the consumption of fresh water was reduced by 530 mm,yield was increased by 9.6%,and the soil and crop were both safety.Short-term irrigation of RDRW did not cause soil and crops pollution,however,it is still necessary to track and monitor the effect of the system on soil,crop,and underground water with long-term reclaimed water irrigation.